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Theorem 1: 
An irrational number times a rational number equals an irrational number. 
Proof (by contradiction): 
Let i = irrational, and let p/q be a rational where p and q are integers.  
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Theorem 2: 
An irrational number plus a rational number equals an irrational number. 
Proof (by contradiction): 
Let i = irrational, and let p/q be a rational where p and q are integers.  
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Theorem 3: 
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Example: 

31.42421356  
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Check: 

 //  06260.00000000    | 31.41421356   237311.41421356|  | 
1000000000
1414213563 2| ε<=−=− LL  

 
 
Simply stated, take the decimal representation of the irrational number to n places, and add a one 
to the least significant digit. 
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Theorem 4: 
irrational is p then m, dividenot  doesn such that  integers ben  and mlet  and prime a be pLet m/n  

Proof (by contradiction): 
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Theorem 5: 

irrational is (pq) then m, dividenot  doesn such that  integers ben  and mlet  and primes be q and pLet m/n

 
Proof (by contradiction): 
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Corollary: 
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Theorem 6:  
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Axiom: 
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Lemma 1:  
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In other words, a finite number added to an infinite number leaves the infinite number 
unchanged. 
 
Lemma 2:  
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Proof 
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Lemma 3: (To be completed) 

nn
n s    c  s limThen 

integer. positive a ben let  and constant,arbitrary an  c and  1,s such that  real be c s,Let 

=+

>

∞
 

Proof 

Page 3 of 3 


