Theorem 1:

An irrational number times a rational number equals an irrational number. **Proof** (by contradiction):

Let i = irrational, and let p/q be a rational where p and q are integers.

Assume
$$i \cdot \frac{p}{q} = \frac{a}{b}$$
 where a and b are integers $\Rightarrow i = \frac{a \cdot q}{b \cdot p} \Rightarrow i = rational //$

Theorem 2:

An irrational number plus a rational number equals an irrational number. **Proof** (by contradiction):

Let i = irrational, and let p/q be a rational where p and q are integers.

Assume
$$i + \frac{p}{q} = \frac{a}{b}$$
 where a and b are integers $\Rightarrow i = \frac{a}{b} - \frac{p}{q} = \frac{aq - bp}{bq} \Rightarrow i = rational //$

Theorem 3:

Given any irrational number i and any ε , there exist a rational number p/q such that $|i - p/q| < \varepsilon$.

In other words, any irrational number can be approximated with a rational number as close as we want. Proof

Let
$$\varepsilon = 1/10^n$$
 where n is an integer. $|i - p/q| < 1/10^n \Rightarrow i - p/q < 1/10^n$ and $p/q - i < 1/10^n \Rightarrow i - 1/10^n < p/q < i + 1/10^n \Rightarrow i \cdot q - q/10^n < p < i \cdot q + q/10^n$
Let $q = 1/\varepsilon = 10^n \Rightarrow i \cdot 10^n - 1 (1)$

Claim $p = int(i \cdot 10^n) + 1$ which will satisfy the above inequality

 $i \cdot 10^n$ is irrational by above theorem $\Rightarrow i \cdot 10^n \neq \text{integer} \Rightarrow \text{int} (i \cdot 10^n) < i \cdot 10^n \Rightarrow$

 $p = int(i \cdot 10^n) + 1 < i \cdot 10^n + 1$ satisfying right side of (1)

Let z be any number. Then by definition of int(), $z - int(z) < 1 \Rightarrow z - int(z) < 2 \Rightarrow i \cdot 10^n - int(i \cdot 10^n) < 2 \Rightarrow i \cdot 10^n < int(i \cdot 10^n) + 2 \Rightarrow i \cdot 10^n - 1 < p = int(i \cdot 10^n) + 1$ satisfyingleft side of (1)//

Example:
Let
$$i = \sqrt{2}$$
 and let $\varepsilon = 1/10^9$. Then $q = 1/\varepsilon = 10^9$ and $p = int (i \cdot 10^9) + 1 = 1414213562 + 1 = 1414213563$
 $\Rightarrow p/q = \frac{1414213563}{100000000} = 1.424213563$

Check: $|\sqrt{2} - \frac{1414213563}{100000000}| = |1.4142135623731 \dots - 1.414213563| = 0.00000000626 \dots < \varepsilon //$

Simply stated, take the decimal representation of the irrational number to n places, and add a one to the least significant digit.

Theorem 4:

Let p be a prime and let m and n be integers such that n does not divide m, then $p^{m/n}$ is irrational **Proof** (by contradiction):

n does not dividem $\Rightarrow m/n = c + d/n$ where candd are integers $c \ge 0$, and $d < n \Rightarrow p^{m/n} = p^{c+d/n}$ $\Rightarrow p^{m/n} = p^{c+d/n} = p^c \cdot p^{d/n}$. Now p^c is rational $\Rightarrow p^c \cdot p^{d/n}$ and $p^{d/n}$ share the same rationality because dividing a rational by a rational yields a rational and dividing an irrational by a rational yields an irrational for the problem becomes somewhat simplified to that of testing the rationality of $p^{d/n}$. Assume $p^{d/n} = a/b$ where a and b are positive integers reduced to lowest tems $\Rightarrow p^d = a^n/b^n \Rightarrow a^n = p^d b^n \Rightarrow p divides a \Rightarrow a = pr$, r an integer, $\Rightarrow (pr)^n = p^d b^n \Rightarrow p^n r^n = p^d b^n \Rightarrow p^{n-d} r^n = b^n \Rightarrow p divides b contradicing the fact that a and b we rereduced to lowest tems. Therefore <math>p^{d/n}$ is irrational $\Rightarrow p^c \cdot p^{d/n} = p^{m/n}$ is irrational/

Theorem 5:

Let p and q be primes and let m and n be integers such that n does not divide m, then $(pq)^{m/n}$ is irrational

Proof (by contradiction):

n does not dividem $\Rightarrow m/n = c + d/n$ where candd are integers $c \ge 0$, and $d < n \Rightarrow (pq)^{m/n} = (pq)^{c+d/n}$ $\Rightarrow (pq)^{m/n} = (pq)^{c+d/n} = (pq)^{c} \cdot (pq)^{d/n}$. Now $(pq)^{c}$ is rational $\Rightarrow (pq)^{c} \cdot (pq)^{d/n}$ and $(pq)^{d/n}$ share the same rationality because dividing a rational by a rational yields a rational and dividing an irrational by a rational yields an irrational So the problem becomes somewhat simplified to that of testing the rationality of $(pq)^{d/n}$. Assume $(pq)^{d/n} = a/b$ where a and b are positive integers reduced to lowest tems $\Rightarrow (pq)^{d} = a^{n}/b^{n} \Rightarrow$ $a^{n} = (pq)^{d}b^{n} \Rightarrow pq$ divides $a \Rightarrow a = pqr$, r an integer $\Rightarrow (pqr)^{n} = (pq)^{d}b^{n} \Rightarrow (pq)^{n}r^{n} = (pq)^{d}b^{n} \Rightarrow$ $(pq)^{n-d}r^{n} = b^{n} \Rightarrow pq$ divides b contradicing the fact that and b we reduced to lowest tems. Therefore $(pq)^{d/n}$ is irrational $\Rightarrow (pq)^{c} \cdot (pq)^{d/n} = (pq)^{m/n}$ is irrational/

Corollary:

Let $p_1, p_2, \dots p_r$ be r distinct primes, and let m and n be integers such that n does not divide m. Then $(p_1 \cdot p_2, \dots p_r)^{m/n}$ is irrational

Theorem 6:

Let z be an integer, and let m and n be integers such that n does not divide m.

Then $z^{m/n}$ is either an integer or it is irrational.

Proof

Case 1: $z^{m/n}$ is an integer. Example $8^{1/3}$ is an integer.

Case2: (Proof by contradiction) $z^{m/n}$ is a non - integer and assumed rational.

n does not divide $m \Rightarrow m/n = c + d/n$ where c and d are integers, $c \ge 0$, and $d < n \Rightarrow z^{m/n} = z^{c+d/n}$ $\Rightarrow z^{m/n} = z^{c+d/n} = z^c \cdot z^{d/n}$. Now z^c is rational integer $\Rightarrow z^c \cdot z^{d/n}$ and $z^{d/n}$ share the same rationality because dividing a rational by a rational yields a rational, and dividing an irrational by a rational yields an irrational. So the problem becomes somewhat simplified to that of testing the rationality of $z^{d/n}$. $z^{d/n} = z^{m/n} / z^c \Rightarrow z^{d/n}$ is a non - integer because a non - integer divided by an integer is a non - integer. Assume $z^{d/n} = a/b$ where a and b are positive integers such that b does not divide a since it is assumed that $z^{d/n}$ is a non - integer $\Rightarrow z^d = a^n/b^n$. But here lies the contradiction. The left side z^d is an integer, but the right side a^n/b^n is a non - integer because if b does not divide a, then b^n will not divide a^n . Therefore if $z^{d/n}$ is a non - integer, then it must be irrational $\Rightarrow z^c \cdot z^{d/n} = z^{m/n}$ is irrational//

Axiom:

Let c be real such that c is an arbitrary constant, and let n be a positive integer. Then $\lim_{n \to \infty} c/n = 0$

Lemma 1:

Let c be real such that c is an arbitrary constant, and let n be a positive integer.

Then $\lim_{n \to \infty} n + c = n$

Proof

 $\lim_{n \to \infty} c/n = 0 \Leftrightarrow \lim_{n \to \infty} 1 + c/n = 1 \Leftrightarrow \lim_{n \to \infty} n + c = n //$ In other words, a finite number added to an infinite number leaves the infinite number unchanged.

Lemma 2:

Let r and z be real such that r > 1 and z > 0 then $r^{z} > 1$ **Proof** $r > 1 \Rightarrow \ln r > 0 \Rightarrow z \cdot \ln r > 0 \Rightarrow e^{z \cdot \ln r} > e^{0} \Rightarrow r^{z} > 1 //$

Lemma 3: (To be completed)

Let s, c be real such that s > 1, and c an arbitrary constant, and let n be a positive integer.

Then $\lim_{n \to \infty} s^n + c = s^n$ **Proof**