Kepler Conjecture (2 Dimension)

In 1611, Kepler proposed that close packing (either cubic or hexagonal close packing, both of
which have maximum densities of 7/ (321 » 74048 %) s the densest possible sphere packing,
and this assertion is known as the Kepler conjecture. Finding the densest (not necessarily
periodic) packing of spheres is known as the Kepler problem.
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