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Binomial Theorem 
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Theorem (Chord to Arc Length) 
Given a chord of length C inscribed in a circle of radius one, the arc length S of the arc 
associated with chord C will be: 
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Proof: 
With respect to Figure (Chord to Arc Length 1), Arc DEF is associated with Chord DF of length 
C. The objective is to measure arc length of Arc DEF. Note that if Chord C was a diameter 
(length 2), arc length would equal exactly ½ circumference which equals π. 
 
                                       Figure (Chord to Arc Length 1) 
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                                    Figure (Chord to Arc Length 2) 
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Theorem  (maybe useless but interesting byproduct of Chord to Arc Length Theorem)  
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Theorem (Arc Length to Chord) 
Given an Arc of length S of a circle of radius one, its associated chord will be of length C and 
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Theorem (Sum of Reciprocals of Roots) 
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Theorem (Taylor Series) 
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Theorem (Sin(x) Series) 
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Theorem (eix) 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
++−+−⋅+++−+−=

⇒+
⋅

++
⋅

−−
⋅

++
⋅

−−⋅+=

⇒++++++=

++−+−=

++−+−=

⋅+=

⋅

⋅

     
!9

x    
!7

x    
!5

x    
!3

x   x  i            
!8

x    
!6

x    
!4

x    
!2

x     1    e

      
9!
xi    

8!
x    

7!
xi    

6!
x    

5!
xi    

4!
x    

3!
xi    

2!
x  x  i    1   e

  SeriesTaylor  from       
5!
z    

4!
z    

3!
z    

2!
z    z  1   e

     
!8

x    
!6

x    
!4

x    
!2

x     1    cos(x)

      
!9

x    
!7

x    
!5

x    
!3

x     x    sin(x)

:Proof
sin(x)i  cos(x)   e

97538642
ix

98765432
xi

5432
z

8642

9753

xi

LL

L

L

L

L

 

 
                              

Page 9 of 9 


