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Introduction to 

Combinatorial Probability 

and its application to Reliability.
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Probability and Dice
• Two Dice – Each 6 Faces – Each Numbered 1 to 6

Roll of Dice

Possible 
Results

2
3
4
5
6
7
8
9
10
11
12

Ways of 
Getting 
Result

1
2
3
4
5
6
5
4
3
2
1

Relative
Frequency

1/36
2/36
3/36
4/36
5/36
6/36
5/36
4/36
3/36
2/36
1/36

2    3    4    5    6    7    8    9   10   11  12

X = Numbered Rolled

P (x) – Probability of Occurrence = Relative Frequency

•For unbiased dice
•For very large number of rolls (events)

P(x)

6/36

5/36

4/36

3/36

2/36

1/36
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Tails You Lose – Heads I win
• Coin Tossing – Unbiased Coin

P(H) = P(T) = 0.5

– Suppose an unbiased coin is to be tossed three times
– Number of possible events is 8
– Possible outcomes of each event

P(x)

3/8

1/8

Events

HHH

HHT

HTH

THH

HTT

THT

TTH

TTT

Num. Tails

0

1

1

1

2

2

2

3

Req. Freq

1/8

3/8

3/8

1/8

0              1               2               3

P (x) = Probability of exactly n (= 0, 1, 2, 3) in 3 tosses of one unbiased coin

X = Number Tails

}
}

•
•

•
•
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Other Probability Expressions

• Bernoulli Trials
– Random experiment with only two possible outcomes
– Probabilities of outcomes do not change from trial to trial
– n trials are independent

Examples (1)  Toss of a coin (head or tail)
(2) Success or failure of a mission

• Let p = probability of success in some Bernoulli trial
Then q = 1 - p  =  probability of failure in the same Bernoulli trial

Since 1 = p + q
Then 1 = (p + q) n



Slide # 7

Probability of Bernoulli Trials

Let p = Probability of success of a trial
q = 1 – p = Probability of failure of the experiment
n = Number of trials (events)

Using Binomial Expansion (Theorem)
1 = (p + q)n = pn + (      ) pn-1 q + (       ) pn-2q2 +..…+ (       ) pn-mqm +…..+qn

Prob n success
Prob (n-1) success
Prob (n-2) success
Prob (n-m) success
Prob (no) success

Prob of at least (n-1) success

Prob of at least (n-2) success

n
1

n
2

n
m
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Pascal’s Triangle
For Determining Coefficients of Binomial Expansion

(p + q)n,  n  =  0, 1, 2, …

n = row# = 0
1
2
3
4
5
6
7
8

1

1     1

1     2     1

1     3     3     1

1      4      6      4      1

1     5      10      10      5      1

1      6      15      20      15      6      1

1      7      21      35      35      21      7      1

1 8      28      56      70      56      28      8      1

n
k

n!
(n – k) ! k!(( ) =

n = row #

k = position #

Note:  Sum of each row = 2n

k = 0         1       2        3        4         5        6    7      8
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Binomial Coefficients

For complex problems with large values of n,
How do we evaluate the coefficients of the Binomial Expansion?
• Four Ways

– Multiply out expansion algebraically

– Use expressions                  =                  =   nCm

– Use tables

– Pascal’s Triangle

n!
m!(n-m)!

n
m



Slide # 10

Coins Revisited

• Assume 3 tosses (trials) are made
• Probability of a head coming is p = 0.5
• Probability of a tail is q = 1 – p = 0.5

1 = (p+q) 3

1 = p3 + 3p2q + 3pq2 + q3 or (    ) p3 + (   ) p2q + (   ) pq2 + (   ) q3

1 = (.5)3 + 3(.5) 2 (.5 ) + 3(.5)(.5) 2 + (.5) 3

A) P(3H in 3 trials)
B) P(2H in 3 trials)
C) P(1H in 3 trials
D) P(0H in 3 trials)
Also:  P(at least 2H in 3 trials) = P(3H) + P(2H) = (.5)3 + 3(.5)2(.5) = 0.5

3
0

3
1

3
2

3
3

The Link to Reliability
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Definition of Reliability

• Reliability is defined as a determination that a system, 
subsystem, unit, or part will perform its intended function 
for a specified interval under certain operational, and 
environmental conditions.

• Since systems, parts, etc., do fail, there is a need to 
establish Reliability values for them.

• Reliability and Probability are related by the expression, 
that Reliability, is equal to Probability of Success.

R = Ps
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Use of Binomial Expansion in Reliability
Three (3) identical black boxes are operating “Active Redundant”.  What is the 
probability that at least one black box will operate if the reliability (probability of 
success) of one box is 0.9?

• Probability of success = p = 0.9
• Probability of failure = q = 1 – p = 0.1

1 = (p + q)3

1 = p3 + 3p2q + 3pq2 + q3

1 = (.9) 3 +  3(.9) 2 (.1)  +  3(.9) (.1) 2 +  (.1) 3

P (0 failures)
P (1 failure)
P (2 failures)
P (3 failures)

Note: This is a combinatorial calculation and can only be used when all failure rates are   
the same and not subject to changes.
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Use of Binomial Expansion in Reliability cont.

• A generalized solution of this Binomial Probability problem 
can be described as:
– n is the total identical components of k of these will fail.
– (      ) ways of k failed components and (n-k) working components

• The probability of occurrence of any particular combination is 
pn-kqk

• P(exactly k failures out of n)

n
k

kknkkn qp
k)(nk!

n!    qp
k
n

  −−
−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

Note: This is a combinatorial calculation and can only be used when all failure 
rates are the same and not subject to changes.
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What is the probability (P) that two (m) or more engines (in a four engine
aircraft) will operate successfully throughout the flight if the reliability of
each engine is 0.9?
In this case, p = 0.9, q = 0.1, m = 2, n = 4

P = ∑ (     ) (.9) 4-k  (.1) k

= (     ) (.9)4 (.1)0 + (     ) (.9)3 (.1)1 + (    ) (.9)2 (.1)2

= (.9)4 + 4 (.9)3 (.1) + 6 (.9)2 (.1)2 = .9963

4 pass
3 pass
2 pass

4
2

4
1

4
0

n
k

m

k = 0

Use of Binomial Expansion in Reliability cont.

Note: m + 1 terms
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Difference between 

Constant and Non-constant 

Failure Rate Devices
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The Reliability or probability of success (Ps) graph of a constant failure rate 
device is an exponential curve as shown with λ being the constant failure rate, 
and t is time. 

Note:
With respect to constant failure rate devices, Ps = Reliability is a function of the variable time
and λ (a constant).

1

0 Time

t
 s e P λ−=

Failure Characteristic of a 
Constant Failure Rate Device
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Failure Characteristic of a 
Constant Failure Rate Device cont.

Another way of describing this exponential behavior is as follows:
Assume 100 identical devices initially fully operational, and for a given 
Δt the Reliability = R = 0.9

10 19 27.1 100 
(1-0.9n)

100 x
0.9n72.98190100

Failed State

Operational State

1-R 1-R 1-R 1-R

R R R R

t = 0                         t= Δt t = 2Δt                    t = 3Δt                    t = nΔt

Δt



Slide # 18

Mechanical Devices
• Mechanical devices exhibit many types of failures including Distortion, 

Stress/Fracture, Wear and Corrosion.
• For example, excessive vibration (mode of failure), from loss of lubricant 

(cause of failure), due to distortion (mechanism of failure)
• The reliability characteristic of a typical mechanical device is shown here:

1

0

0

REL

Time
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Graph comparing Rel of Mechanical and an Electrical Device

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

Mechanical
Electrical

Reliability vs. Time
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Pf
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Comparing Failure Rates of an Electrical 
and a Mechanical Device

dx  e 
2
1     1

 e 
2
1  

    (t) -  Device Mechanical
t

0

s 2
u)(x

s 2
u)(t

2

2

2

2

∫
⎟
⎠

⎞
⎜
⎝

⎛ −
−

⎟
⎠

⎞
⎜
⎝

⎛ −
−

−

=

π

πλ

s

s

λλ     (t) - Device Electrical =

Note: Mechanical device exhibiting a “Normal” failure characteristic

( )  
R(t)

R(t)1d/dt    (t)    Rate Failure  :Definition −
== λ
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Calculating probability of failure of

both Constant and Non-constant

failure rate Devices
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Calculating Failure Rate of Components

Calculating failure rates of components is performed in one of two ways.

Measurement:
For example place a number of identical components into operation, then
measure and average their times to failure.

Prediction:
Most failure rate predictions are performed using a collection of formulas
listed in Mil-Hdbk 217. These formulas were designed and developed
based on the physics of failure of various components. Math modeling 
failure characteristics of components involves physics to a great extent.
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Example: Calculating Memory IC Failure Rate using Mil-Hdbk 217

500k  C 400k  C if 2.3  A2
400  C 300k  C if 1.1  A2

300k   C if  0  A2
cycles gprogrammin of #  C     C x 6.817  A1

Factor Code CorrectionError   
)productionin  device (YearsFactor  Learning  
Standard) what  toaccording (ProcuredFactor Quality   

only) EEProms(for   BABA  

Factor talEnvironmen  
Factor Pins# / Package  C

Factor eTemperatur  
Factor Complexity Die  C

)CC(

ECC

L

Q

ECC
Q

22
11CYC

E

2

T

1

LQCYCE2T1p

<=<=
<=<=

<==
==

=π
=π

=π

π⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

π
+=λ

=π
=
=π
=

ππλ+π+π=λ

Calculating Failure Rate of Components cont.
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Calculating Memory IC Failure Rate using Mil-Hdbk 217



Slide # 26

Constant Failure Rate Devices (Exponential Distribution)

The failure characteristics of many electrical components follows very closely
the exponential curve, and therefore the calculation of probability of success Ps
and probability of failure Pf is very simple:

t
f

t
s

e  1  P  UnRel

e  P       Rel
λ

λ

−

−

−==

==

Unfortunately this is not the case with mechanical components i.e. non-
constant failure rate devices.
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Non-constant Failure Rate Devices 

Excerpt from Mil-Hdbk 217:

The following failure-rate model applies to motors with power ratings below 
one horsepower. The model is dictated by two failure modes, bearing failures 
and winding failures. Typical applications include fans and blowers as well 
as various other motor applications. 

The instantaneous failure rates, or hazard rates, experienced by motors 
are not constant but increase with time.

Hours 10 / Failures 10 x 1t  66

W3
B

2
p

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+=
αα

λ
Factor  Winding 

Factor Bearing  

W

B
=
=

α
α
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• The failure characteristics of many mechanical components follows very 
closely to the Normal curve. A graph representing the number of failures vs. 
time will result in the famous bell curve which we call the Normal 
distribution.

• The Normal equation is

• The Probability of Failure       is the Integral from 0 to t of the above 
equation.

Application: Failure time distribution of items whose failure modes are a result
of wearout

( )
( )

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −
−

=
22

2

  
2
1f S

ux

e
s

x
π

( )

dxe
s

P
s
ux

t

f   
2
1 2

2

2

0

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −
−

∫=
π

u= Mean of Distribution
s= Standard Deviation

( )fP

Non-constant Failure Rate Devices 
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Normal Distribution Example
• An item has a mean wearout life of 300 hours with a standard deviation of 40 hours. 

If the time before its maintenance scheduled replacement is 200 hours, the 
probability it will meet its maintenance time is:

(no failures in 200 hours)

(no failures in 250 hours)

( )

( )

0.89435 :Ans

   
240

11)250(1)250(

0.99379:Ans

  
240

11)200(1)200(

2

2

2

2

402
300250

0

402
300200

0

dxeFR

dxeFR

x

x

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

•
−

−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

•
−

−

∫

∫

−=−=

−=−=

π

π
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Two Major Problems with 

MTBF Predictions
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Quote from Wikipedia:

As of 1995, the use of MTBF in the aeronautical industry (and others) has 
been called into question due to the inaccuracy of its application to real 
systems and the nature of the culture which it engenders. Many component 
MTBFs are given in databases, and often these values are very inaccurate.

This has led to the negative exponential distribution being used much more 
than it should have been. Some estimates say that only 40% of components 
have failure rates described by this. It has also been corrupted into the notion 
of an "acceptable" level of failures, which removes the desire to get to the 
root cause of a problem and take measures to erase it. The British Royal Air 
Force is looking at other methods to describe reliability, such as 
maintenance-free operating period (MFOP).

Problem 1 restated more simply:
Some non-constant failure rate devices have been and still are erroneously
modeled as constant failure rate devices. 

Problem 1 with MTBF Predictions
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Quote: (ASQ Reliability Review, Vol. 24, No. 1, pp 18-23, March 2004)

Many years ago people hypothesized the constant failure rate model for 
electronics parts made to military standards observed to have constant or 
bathtub-shaped failure rates. Diligent people collected data and used statistics 
to estimate constant failure rates and used regression to estimate the p-factors 
and stress factors according to acceleration models.

MIL-HDBK-217 standardized MTBF prediction, under the assumptions of 
series systems of statistically independent parts and constant failure rates. 
Unfortunately, many parts don’t have constant failure rates. Some have infant 
mortality. Some deteriorate; such as motors (dirt, lubricants, and bearings), 
some capacitors (electrolytic), and ICs (electromigration and other physical 
and chemical processes). 

Problem 1 with MTBF Predictions cont.
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Quote: Quanterion Solutions Inc. Vol.1 No. 1, August 2001

MIL-HDBK-217 has been the mainstay of reliability predictions for about 
40 years but it has not been updated since 1995, and there are no plans by 
the military to update it in the future. 

Problem 2: MIL-HDBK-217 is clearly out of date. Evidence has shown
that 217 predicted data can differ from field data by as much 
as 10 times.

Problem 2 with MTBF Predictions
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Intro to Non-combinatorial Probability

and its application to Reliability
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Combinatorial vs. Non-combinatorial Logic

Parallel               Combinatorial

Series                  Combinatorial

Series / Parallel  Combinatorial

Standby         Non-combinatorial

Note: Distinction required for proper system math modeling
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Combinatorial Logic
Two or more input states define one or more output states.
Output states are related by defined rules that are independent
of previous states.
- Logic depends solely on combinations of inputs
- Time is neither modeled or recognized
- Outputs change when inputs change irrespective of time
- Output is a function of, and only of, the present input

Simply stated combinatorial logic is a logic that can be expressed with 
any combination of And gates and Or gates.

Non-combinatorial Logic (Sequential Logic)
Logic output(s) depends on combinations of present input states, and
combinations of previous input states. In other words non-combinatorial 
logic has memory while combinatorial logic does not.

Non-combinatorial logic cannot be expressed exactly with any 
combination of And gates and Or gates.

Combinatorial vs. Non-combinatorial Logic
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Combinatorial vs. Non-combinatorial logic
(Combinatorial  Example 1)

Three (3) identical black boxes are operating “Active Redundant”.  What is the 
probability that at least one black box will operate if the reliability (probability of 
success) of one box is 0.9?

• Probability of success = p = 0.9
• Probability of failure = q = 1 – p = 0.1

1 = (p + q)3

1 = 1p3 + 3p2q + 3pq2 + 1q3

1 = 1(.9) 3 +  3(.9) 2 (.1)  +  3(.9) (.1) 2 +  1(.1) 3

P (0 failures)
P (1 failure)
P (2 failures)
P (3 failures)
Note: This is a combinatorial calculation and can only be used when all failure rates are   

the same and not subject to changes.
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Two black boxes start operation at the same time. Box 1 has failure rate a and 
Box 2 has failure rate b. Successful system operation requires that Box 1 or Box 2 
or both be working. Find Pf the Probability of System Failure.

State Diagram                   Logic

Full
Up

1

2

1, 2

a

b

b

a

Pf
1-e-at

1-e-bt

P(4) = (1– e–at)(1– e–bt)P(1) = e–at e–bt
Pf = (1– e–at)(1– e–bt)

Combinatorial vs. Non-combinatorial logic
(Combinatorial  Example 2)

P(3) = e–at(1– e–bt)

P(2) = (1– e–at) e–bt

Note: Failure rates remain unchanged regardless of state.
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Three black boxes start operation at the same time. Box A, B, and C have failure 
rate a, b, and c respectively. Successful system operation requires that Box A, B, or
C be working. Find Pf  the Probability of System Failure.

State Diagram              Logic

FU B

A

C

(1)

(2)

(3)

(4)

a

b

c
A, C

A, B

B, C

(5)

(8)

A,B,C

b
c

b

a

c

c

a

b
a

(7)

(6) Pf

A
B
C

Combinatorial vs. Non-combinatorial logic
(Combinatorial  Example 3)

A = (1– e–at)
B = (1– e–bt)
C = (1– e–ct)

Pf = P(8) Pf = P(8) = (1– e–at)(1– e–bt)(1– e–ct)

Note: Failure rates remain unchanged regardless of state.
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• State probabilities for components in paralleled are:
• State 1 – No failures P(1) = e-at · e-bt · e-ct

• State 2 – Box A fails (P2) = (1-e-at) · e-bt · e-ct

• State 3 – Box B fails (P3) = (1-e-bt) · e-at · e-ct

• State 4 – Box C fails (P4) = (1-e-ct) · e-at · e-bt

• State 5 – Boxes A & B fail (P5) = (1-e-at)(1-e-bt) · e-ct

• State 6 – Boxes A & C fail (P6) = (1-e-at)(1-e-ct) · e-bt

• State 7 – Boxes B & C fail (P7) = (1-e-bt)(1-e-ct) · e-at

• State 8 – All 3 Boxes failed (P8) = (1-e-at)(1-e-bt)(1-e-ct)

Combinatorial vs. Non-combinatorial logic
(Combinatorial  Example 3 cont.)
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With respect to the previous slide assume all failure rates are
the same i.e. a = b = c, and let p = e-at  and q = 1-e-at then

• State 1             0 failures = e-at · e-at · e-at = (e-at )3 = p3

• State 2+3+4    1 failures = 3(e-at )2(1-e-at) = 3p2q

• State 5+6+7    2 failures = 3(e-at )(1-e-at)2 = 3pq2

• State 8             3 failures = (1-e-at)3 = q3

Combinatorial vs. Non-combinatorial logic
(Combinatorial  Example 3 cont.)

Note: 
Probability distributions become the same as when using a binomial expansion
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FU
A
fail

A&B
fail

a b

(1) (2) (3)

btat e
ba

ae
ba

b  P(3) −−

−
−

−
=

Box A has failure rate a  and Box B has failure rate b.  Box A is turned on while Box 
B remains powered off in standby mode.  Immediately upon detection of Box A 
failure, Box B is turned on.  Calculate the probability that both boxes are failed. 

State Diagram                     Logic

( )atbt ee
ba

a  P(2) −− −
−

=

ate  P(1) −=

Combinatorial vs. Non-combinatorial logic
(Non - combinatorial  Example 1)

?

?
?
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Consider a parallel load-sharing system consisting of two components A and B. Under 
the load sharing conditions, each component has failure rate “a”. Upon failure of one 
component, the failure rate of the surviving component is “ka” (k times a) due to 
increased stress.   

State Diagram                                                   Logic

Note: k = 1 implies no change in failure rate. In that case, this problem becomes combinatorial 
and can be solved directly using the binomial expansion.

(1)

(2)

(3)

(4)

a

a

k a

k a

Full Up
System Fail

(Box A and B Failed)

A Failed

B Failed

    kat e
k2

2    t2a e 
k2

k  1  =  P(4)         −
−

−−
−

+ Pf = P(4) =  ?

Combinatorial vs. Non-combinatorial logic
(Non - combinatorial  Example 2)
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Two components are in operation. Find the probability that both Boxes A and B 
fail and that Box A fails before Box B.  Also find the probability that both Boxes 
fail and that Box B fails before Box A.

State Diagram                  Logic

FU

A
fail

B
fail

A,B
faila

b

b

a

(1)

(2)

(3)

(4)

B,A
fail

(5)

atb)t(a

btb)t(a

ee 
ba

a
ba

b  P(5)

ee 
ba

b
ba

a  P(4)

−+−

−+−

−
+

+
+

=

−
+

+
+

=

Combinatorial vs. Non-combinatorial logic
(Non - combinatorial  Example 3)
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Why Markov Analysis?
for

Calculating Probability of 

Non-combinatorial Problems
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Pi

a1

a2

aj

an

b1

b2

bk

bm

The following is a typical Markov State taken from a Markov State Diagram with n 
input transitions with constant failure rates aj, and m output transitions with constant 
failure rates bk.

to other statesfrom other states

Pi (the probability of being in state i) cannot be calculated immediately. 
Calculation of Pi requires the solution of a set of simultaneous differential 
equations (DE). Determination of the DEs is a very simple procedure once the 
Markov State Diagram of a system has been constructed. 

Solving a Non-combinatorial Problem using DEs
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FU A
fail

A&B
fail

a b

(1) (2) (3)

3
3

21
2

1
1 bP  

dt
dP   ,bP aP  

dt
dP   ,aP  

dt
dP

=−=−=

There is a one to one correspondence between each Markov state of a system and its 
associated DE. The DE associated with a typical P(i) is:

P(i) bP(j)a  
dt

dP(i) m

1 k 
k

n

1  j
j ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−= ∑∑

==

Therefore with respect to the Standby Problem, the system’s set of DEs are easily 
determined from its Markov State Diagram.

DEs

State Diagram

Note: Transitions into a state result in positive terms in the DE, while transitions leaving
a state yield negative terms.

For the sake of simplifying notation let Pi = P(i).

Solving Standby Problem using DEs
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 P(t) A  (t)P'  e  thereforbP  
dt

dP   ,bP aP  
dt

dP   ,aP  
dt

dP
2

3
21

2
1

1 ⋅==−=−=

What follows is a method using Matrix algebra for solving for P1, P2, and P3
numerically based on the 3 Simultaneous DEs obtained from the Markov Diagram: 

Note: P1(0) = 1, P2(0) = 0, and P3(0) = 0 assumed.

Solving Simultaneous DEs using Matrix Algebra 

issolution   theand   
P 
P 

 P 
  P(t)   

0   b,    0, 
0  b,  a, 
 0  0,  a, 

 A     

dt
dP 

dt
dP 

 
dt

dP 

  (t)P' where

3

2

1

3

2

1

=−
−

==

L++++=⋅=
3!

tA 
2!

tA At   I  exp(At)  whereP(0)  exp(At)   P(t)
3322
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Solving Simultaneous DEs using Arithmetic 
dt = 1, a = 0.3, b= 0.4dtbP  dP   ,dt)bP (aP  dP   ,dtaP  dP 2321211 =−=−=

P1-a*P1*dt P2+(a*P1-b*P2)*dt P3+b*P2*dt
t P1 P2 P3 P1+P2+P3
0 1 0 0 1
dt 0.7 0.3 0 1

2dt 0.49 0.39 0.12 1
3dt 0.343 0.381 0.276 1
4dt 0.2401 0.3315 0.4284 1
5dt 0.16807 0.27093 0.561 1
6dt 0.117649 0.212979 0.669372 1
7dt 0.0823543 0.1630821 0.7545636 1
8dt 0.05764801 0.12255555 0.81979644 1
9dt 0.040353607 0.090827733 0.86881866 1

10dt 0.028247525 0.066602722 0.905149753 1
11dt 0.019773267 0.048435891 0.931790842 1
12dt 0.013841287 0.034993515 0.951165198 1
13dt 0.009688901 0.025148495 0.965162604 1
14dt 0.006782231 0.017995767 0.975222002 1
15dt 0.004747562 0.01283213 0.982420309 1
16dt 0.003323293 0.009123546 0.987553161 1
17dt 0.002326305 0.006471116 0.991202579 1
18dt 0.001628414 0.004580561 0.993791025 1
19dt 0.00113989 0.003236861 0.99562325 1
20dt 0.000797923 0.002284083 0.996917994 1

Check
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Standby Problem
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Solving Simultaneous DEs using Arithmetic cont.

P1

P3

P2
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⇒=−=−=  bP  
dt

dP   ,bP aP  
dt

dP   ,aP  
dt

dP
2

3
21

2
1

1

What follows is a method using Laplace Transforms for solving for P1, P2, and P3
based on the 3 Simultaneous DEs obtained from the Markov Diagram: 

( ) ( ) ( ) ( ) ( ) (1)                PaL 1PsL    PaL  )0(PPsL    aPL  
dt

dPL 111111
1 −=−⇒−=−⇒−=⎟
⎠
⎞

⎜
⎝
⎛

( ) ( ) ( ) ( ) ⇒−=−⇒−=⎟
⎠
⎞

⎜
⎝
⎛   PbLPaL  )0(PPsL   bP aPL  

dt
dPL 212221

2

( ) ( ) ( ) (2)                                                                                          PbLPaL  PsL 212 −=

( ) ( ) ( ) ( ) ( ) (3)                         PbL PsL    PbL  )0(PPsL    bPL  
dt

dPL 232332
3 =⇒=−⇒=⎟
⎠
⎞

⎜
⎝
⎛

( ) ( ) (4)                                   
b)a)(s(s

a PL   (2) & (1) and   
as

1 PL    (1) 21 ++
=⇒

+
=⇒

Note: P1(0) = 1, P2(0) = 0, and P3(0) = 0 assumed.

Solving Simultaneous DEs using Laplace 
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b)a)(s(s

aL P and e    
as

1L P    (4) 1-
2

at1-
1 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++

==⎟
⎠
⎞

⎜
⎝
⎛

+
=⇒ −

   
as
b)a/(a  

bs
b)a/(a    

b)a)(s(s
a  Fractions Partial from s techniqueUsing ⇒

+
−

−
+
−

=
++

   e
ba

a  e
ba

a P      
as
b)a/(a L  

bs
b)a/(a L P atbt

2
1-1-

2
−−

−
−

−
=⇒⎟

⎠
⎞

⎜
⎝
⎛

+
−

−⎟
⎠
⎞

⎜
⎝
⎛

+
−

=

⇒
−

−
−

+−=⇒=++ −−−    e
ba

a  e
ba

ae1 P      1PPP btatat
3321

btat
3 e

ba
a e

ba
b1    P −−

−
−

−
+=

Note: The third DE in Line (3) could be used to solve for P3. However since P1 and P2
are known, use the fact that P1 + P2 + P3 = 1. This approach is faster and simpler.    

Solving Simultaneous DEs using Laplace cont.
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C  +dt   e g(t) =e Pthen  

   P f(t)  g(t)
dt

dPi  and  t,of functions are g(t) and f(t) If

)dtf(t)dtf(t
i

i

∫∫ ∫

−=

Solution to “Standby” Using Formula

at
111

at
11

dta
11

1 eC   = PC   =e PC   =e Pa  f(t) and 0  g(t)    aP  
dt

dP −⇒⇒⇒==⇒−= ∫

2
bt

1
bt

2121
2 C  +dt   eaP =e Pb  f(t) and aP  g(t)   bP aP  

dt
dP

∫⇒==⇒−=

⇒+
−

= −−− ∫∫   C e
ab

a    C +  dt ea =C +dt   eea = 2
a)t(b

2
a)t(b

2
btat

Where C1 = probability of P1 at t = 0 Assume C1 = P1(0) = 1  ⇒ P1 = e–at

Many Markov problems can be solved using the following formula:

C = arbitrary constant
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⇒
−
−

=⇒==+
−

= −−   
ab

aC 0 when t0P assumptionby  Now      eC e
ab

a    P 22
bt

2
at

2

    e
ba

ae
ba

a   e
ab

ae
ab

a    P atbtbtat
2

−−−−
−

−
−

=
−

−
−

=

⇒
−

−
−

+−=⇒=++ −−−    e
ba

a  e
ba

ae1 P      1PPP btatat
3321

btat
3 e

ba
a e

ba
b1    P −−

−
−

−
+=

Again since P1 and P2 are known, use the fact that P1 + P2 + P3 = 1. 

Solution to “Standby” Using Formula cont.
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A process called “Convolution” can also be used to calculate Pf  of Standby 
Systems. 

Definition:

Let A(t) and B(t) be probabilities of failure of two devices, with device B in 
Standby of device A, and let a(t) be the derivative of A(t). 

The Convolution of  A and B = Conv(t) = ∫ =⋅−
t

0
fP  a(x)dx  x)B(t

Conv(t) turns out to be the Standby System’s Probability of failure Pf.

Note: Convolution will be explained in more detail in the discussion of non-constant failure rate 
devices.

Solution to “Standby” Using Convolution
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Solution to Standby Using Convolution cont.

Let A(x) = 1−e–ax, and B(x) = 1−e–bx be the probabilities of failure of 
devices A and B. Then A’(x) = a(x) = ae–ax, and B(t−x) = 1−e–b(t−x) since 
a and b are constant failure rates of devices A and B respectively  ⇒

⇒−=⋅−== ∫∫ −−−−−−−   )dxe(ea    dxae)e(1  Conv(t)  P
t

0

axx)b(tax
t

0

axx)b(t
f

 e
ba

be
ba

a1    (sys)P atbt
f

−−

−
+

−
−=

⇒⋅−=−= ∫∫∫ −−−−−−−− dx  eea dx ea    )dxe(ea   P
t

0

b)x(abt
t

0

ax
t

0

b)x(abtax
f

⇒−
−

−−=−⋅
−

−−= −−−−−−− )e  e(
ba

a e  1 )e  (1 e
ba

a )e  (1   P atbtatb)ta(btat
f
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Solution to Standby Using Convolution cont.

Another approach uses the famous “Convolution Theorem” that utilizes 
Laplace and Inverse Laplace Transforms. Simply stated:

{ } { }=⋅−=⋅ −−−−   )L(ae)eL(1 L  L[a(t)]L[B(t)] L and atbt11

{ }L[a(t)]L[B(t)]L  F(t) then a(x)dxx)B(t  F(t) If 1
t

0

⋅=⋅−= −∫

=
⎭
⎬
⎫

⎩
⎨
⎧

++
−

+
=

⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛

+
⎟
⎠
⎞

⎜
⎝
⎛

+
−  

b)a)(s(s
a

a)s(s
aL   

as
a

bs
1

s
1L 1-1-

 e
ab

be
ab

a1    F(t) atbt −−

−
−

−
+=⇒−

−
−− −−− )e(e

ab
a  e1 btatat
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Probability Density Functions (PDF)

& 

Cumulative Density Functions (CDF)
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Probability Density Function (PDF)
Definition:

The mathematical definition of a continuous probability density function f(x), is 
a function that satisfies the following properties:

a) The probability that x is between two points a and b is less than or equal to 1.

b) f(x) is non-negative for all x. 

c) The integral of the probability function is one, i.e. 1 dx   f(x) =∫
∞

∞−

Notes: 
1) A probability density function is also known as a probability function. 
2) The probability at a single point is always zero. 
3) Probabilities are measured over intervals, not single points. That is, the area under the   

curve between two distinct points defines the probability for that interval. 
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Probability Density Function (PDF)
(Normal Distribution Example)

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−

=
2

2

2s
u)(x

e
2s
1  f(x)
π

f(x)u = mean

s = standard deviation

Note:
Area under curve = 1
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The cumulative distribution function (CDF) is the probability that the variable takes a 
value less than or equal to t. For a continuous distribution, this can be expressed

mathematically as                                              dx  f(x) CDF 
t

∫
∞−

=

Cumulative Density Function (CDF)
Definition:

PDF                                                       CDF

t
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What is known as a CDF in the world of Probability is known as probability of
failure Pf  in the world of Reliability.

dx  f(x) P CDF 
t

f ∫
∞−

==

t

PDF = f(x)

Cumulative Density Function (CDF)
More Normal Distribution Examples:

Note: The PDF is simply the derivative of the CDF
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Probability Density Function (PDF)                 Probability of Failure Function (CDF) 

A graph of typical electrical/electronic components results in the Probability 
Density Function (PDF), whose curve is shown on the left. When one integrates 
the PDF over time, the result is a Continuous Distribution Function (CDF). The 
probability that a failure will occur at any time during the interval (0, t) is

rate. failureconstant       where1 dx   P t
t

0

x
f =−=⋅= −−∫ λλ λλ ee

λ

0 Time 0 Time

1
    f(t) tλλ −⋅= e

    P t
s

λ−= e

t
f 1  P λ−−= e

Exponential Distribution Example

t
fs     P 1    P   success ofy Probabilit  :Note λ−=−== e
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PDFs & CDFs of Typical Distributions
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PDFs & CDFs of Typical Distributions cont.
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Example of how Failure Characteristics 

of a Component is Determined
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Hypothetical Construction of a PDF
Tire Failure Analysis (Normal Distribution):

Miles # of Failures
0 0

10k 11
20k 135
30k 606
40k 1000
50k 606
60k 135
70k 11
80k 0

Total Failures 2504
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0        10k      20k       30k      40k       50k       60k    70k     80k
miles       

Hypothetical Construction of a PDF
Tire Failure Analysis (Normal Distribution):

Number

of

Tire

Failures

1000

Note: Curve shown after normalization i.e. adjusted to set area under curve equal to 1. 

606

135

11
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0        10k      20k       30k      40k       50k       60k    70k     80k
miles       

Resultant CDF (Pf Curve) from PDF
Tire Failure Analysis (Normal Distribution):

Pf
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Calculating 

Probability of Failure 

of a System
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Calculating Probability of Failure of a System
System:

1) Develop Block (Reliability) Diagram – Show all series and redundant subsystems 
and/or black boxes
2) Given estimates of θ = MTBF or λ = failure rate, use binomial distribution to 
assess subsystem reliability. The assumption is that these estimates accurately 
represent the distribution parameter

Example: Truncated Aircraft System

1R

Comp

Comp

PS

PS

Engine

Engine

Engine

Engine Hyd

Hyd

Hyd

Fuel

Fuel

2R 3R 4R 5R
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Conditions and Assumptions
• Time of Flight, t = 6 hours
• R(t) = Reliability of Each Subsystem
• (a) Subsystem Failure Rate R(t)=p

Power Supply 0.001 failures/hr 0.994
Computer 0.015 0.914
Engine 0.004 0.976
Hydraulics 0.002 0.988
Fuel Distribution 0.003 0.982

• (b) Either power supply, computer, fuel system (1 out of 2) required
for success

• (c) Any 3 out of the 4 engines required
• (d) Any 2 out of the 3 hydraulics required
• (e) Either one of the fuel systems required

Calculating Probability of Failure of a System cont.

A
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Compute
P.S.: P(2 or 1) =

Comp: P(2 or 1) =
Engines: P(4 or 3) =

Hydraulics: P(3 or 2) =
Fuel: P(2 or 1) = 

P (System Success) =   

Effective MTBF: 

For t = 6, 

( ) ( )( )
( ) ( )( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( )( ) 5

22

4
2323

3
3434

2
22

1
22

999676.0018.982.2982.2

999571.0012.988.3988.3

996654.0024.976.4976.4

992604.0086.914.2914.2

999964.0006.994.2994.2

Rpqp

Rqpp

Rqpp

Rpqp

Rpqp

==+=+

==+=+

==+=+

==+=+

==+=+

9885.0
5

1
=

= ii
Rπ

tt eeR λλ −− == 9885.0  ,

( )

hours  518               

00193.0
6
9885.1

=

=−=

E

n

θ

λ

B

C

D

Calculating Probability of Failure of a System cont.
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• A black box consists of 32 parts integrated circuits, wiring, boards, 
connectors, etc.

• The reliability engineer consults MIL-HDBK-217F to determine and/or 
compute the failure rates for each piece part.  (Included in that handbook are 
qualified parts with their failure rates stipulated, as well as specific 
instructions for computing λ based on application of the part)

• Assuming that each of the 32 parts must function successfully (not fail) the 
task comes down to simply adding the failure rates.

• Thus for the black box not to fail in time t

λE= Effective failure rate of the box

( ) tt ee Ε−++− == λλλλ 3221 ...   R(box)

Calculating Probability of Failure of a System cont.
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For two boxes with failure rates respectively, the requirement that both boxes 
operate successfully for t hours is

Rule: If n boxes are required to operate for a system to meet mission requirements 
then the system failure rate is the sum of the box failure rates

Since

Where (System Failure Rate)

 e       

ee        

(t)R(t) RR(t) 

)t  (

tλtλ
BA

BA

BA

λλ +−

−−

=

⋅=

⋅=

tλλi-ttλ

tλ
n

        

i

n

 S

s

n

i

n

i
i

i

i

i

eee

eπ

RπR

−∑∑−

−
=

=

=== ==

=

=

11

1

1

∑=
n

is λλ

Calculating Probability of Failure of a System cont.

=i 1



Slide # 76

Derivation of MTBF
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• Applicability
The Exponential Distribution of times to failure has been proven to apply 
to electronic, electrical, and electromechanical systems, as well as 
complex systems including pneumatics, hydraulics.
For the Exponential Distribution, Mean Time Between Failures
MTBF (θ) is the inverse of Failure Rate (λ)

• Reliability
For units governed by the Exponential Function
Either:

Equivalency:

λ
θ 1

=

θ

λ

t

t

eR

eR
−

−

=

=

Computing MTBF
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Computing MTBF
• What is the effective MTBF of a system consisting of 4 boxes, all of which 

must operate properly for the mission to succeed, given that the failure rates 
of the four boxes are                         .  The system reliability,       , for this 
configuration is:

And

Therefore

Thus for a Series System:

4321 ,,, λλλλ SR

( )( )( )
( )

4321

4321

1

4321

4321

λλλλ
θ

eR

eR

eee)(eR

RRRRR

S

θ
t- 

S

tλλλλ
S

tλtλtλtλ
S

S

S

+++
=

=

=

=

=

+++−

−−−−

∑

∑

=

=

==

=

n

i
i

s
s

n

i
s

λλ
θ

λλ

1

1
1

11
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MTBF of 2 Boxes in Series (Exponential Distribution)

( )

( )

( )

BA
S

t
S

t
SBAS

SS

MTBF

dteMTBF

etR

dttRMTBF

BA

BA

λλ

λλλ

λλ

λλ

+
=

⇒=

⇒=⇒+=

==

∫

∫

∞
+−

+−

∞

1

)(

    MTBF System :Definition

0

0
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MTBF of 2 Boxes in Parallel (Exponential Distribution)

( )

( )( )
( ) ( )

( )

AAA
SBA

BABA
S

ttt
S

ttt
S

BABABAS

SS

MTBF

MTBF

dtedtedteMTBF

eeetR

RRRRRRR

dttRMTBF

BABA

BABA

λλλ
λλ

λλλλ

λλλλ

λλλλ

2
3  

2
12      :Note

111

111

 :Definition

000

0

=−=⇒=

+
−+=

⇒−+=

⇒−+=

⇒−+=−−−=

=

∫∫∫

∫

∞
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∞
−

∞
−
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Summary of Reliability of Series & Parallel Circuits

1. Series

2. Parallel (refer to page on MTBF of 2 boxes in Parallel)
Box Reliability not Equal Box Reliability Equal

Using MTBF is derived on previous page:

( )
BAs

t
BAs BARRR λλλλλ +==⋅= +        e    -

( )( )[ ]BAs RRR −−−= 111

( )
( ) BABA

BABA
s

λλλλ
λλλλλ

−+

+
= 2

( )[ ]211 As RR −−=

3
2

3
2

2

3
A

A

A
s

λ
λ
λλ ==

AR BR

BR

AR

BR

AR

A
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( )( )( )CBAs RRRR −−−−= 1111 ])1[(1 3
As RR −−=

( )( )[ ] ( )( )( )[ ] ( )[ ]FEDCBAs RRRRRRR −−−−−−−−−= 111111111

4. AR

FR

ER

DR

AR

CR

BR

5.

AR

AR

AR

6.

BR

CR

Summary of Reliability of Series & Parallel Circuits
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Why Weibull Analysis?
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Weibull Analysis
Why Weibull?
• Primary advantage is the ability to provide very accurate failure 

analysis and failure forecasting with extremely small sample 
size, resulting in savings in time and money.

• Weibull distributions include a large variety of distribution 
shapes which can be used to best fit life data. This process is 
known as curve fitting

• Weibull plots support Maintenance tasks, particularly 
Reliability centered Maintenance.

• Weibull analysis reduces complicated mathematical integrals to 
simpler algebraic equations thereby greatly simplifying 
probability of failure computations
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Weibull cont.

It is commonly known that the Weibull equation 

can be used to curve fit (approximate) the Pf  of components 
that exhibit non-constant failure rates. The obvious questions 
that arise are :  

1.   How is it done? and
2.   How accurate are the approximations?  

 
a

bt 
c

e 1 F(t) 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −

−

−=
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Example: 
A certain mechanical device has exhibits a normal failure 
distribution with u = 100, s = 20, and hl (hours already 
logged) = 5. 
Set a = 69.62, b = 32.384, c = 3.456, then

 
a

bt t

0

s 2
hl)u(x

f

c

2

2

e 1  dx   e 
2
1      P

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −

−
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ +−
−

−≈= ∫πs

Notice the correlation shown in the graph that follows: 

Note: The derivation of a, b, and c is a subject for another paper.

Weibull cont.
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Weibull cont. (How accurate are these approximations?)
Pf vs. Miles                                                    (0 to 200k miles)
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A simple system is made up of a mechanical device with a normal 
distribution of failure, in series with an electrical device. The mechanical 
device has  u = 100, s = 20, with k = 10 hours logged. The electrical device 
has a failure rate     of .01 failures per hour. Calculate the Pf of the system.

Logic Diagram

Weibull cont. (Mechanical Device in Series with an Electrical Device)

F(t)  G(t)

Pf  = F(t) + G(t) - F(t) G(t)

  [-ln(0.5)] a ku    b and  s,481.3  a  where

 e 1  (mech) P   F(t)

c
1

c   
a

bt

f

−−==

−==
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⎦
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⎣

⎡
⎟
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.01     wheree 1  (elect) P  G(t) t 
f =−== − λλ

and  e1    F(t)G(t) G(t)  F(t)  P Now
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⎠
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⎥
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.01t 
3.456

69.620
27.384t 

f e1  P     .01    10, k   20,  s  100, u λ

λ
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Weibull cont. (Graph of Mechanical in Series with an Electrical Device)
Pf vs. Hours (0 to 150 hours)
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Reliability vs. Safety
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Reliability vs. Safety

• Reliability and Safety should not be equated (generally true)
• Improved system reliability does not necessarily improve system safety

– Axioms: Adding series components always reduces system reliability

Adding parallel capabilities always improves system 
reliability

– Not always true for system safety

• Each configuration contingency depends on failure mode hypothesized
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• Fuel Valves (ascent and descent engines)

Reliability To Assure Operation    (A)

Safety To Preclude Leakage    (B)

Solution (C)

No single failure (inability for valve to open, valve leakage)

• Configurations Applicable to Commercial Aircraft
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Reliability vs. Safety (Example)
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Points to Keep in Mind
•Reliability = Probability of success

• Distinction should be made between constant and non-constant failure rate 
devices. Mechanical devices exhibit non-constant failure rates.

•Distinction should be made between combinatorial and non-combinatorial 
logic when performing system failure analysis. 

• Non-combinatorial logic cannot be expressed using logic gates.

•Mil-Hdbk 217 out of date.

• Math modeling of failure characteristics of components involves physics.

• Math modeling of failure characteristics of a system is all math

• Markov is a buzz word for methods used to solve non-combinatorial problems.

• Several Reliability SW packages are out on the market advertising Markov
Analysis. Who or what organization is validating them?
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