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Introduction:  
Many electronic component manufacturers predict failure rates (λ) of their devices by use of an 
in-house testing process. For example the test may involve placing a certain number of 
components in an oven, and allowing them to “bake” at a predetermined temperature for a 
predetermined amount of time. At the end of the test, the number of failed devices are counted to 
determine the values of r and “DeviceHours”, where r = number of failures, and DeviceHours  = 
number of surviving components times the number of hours they remained in the oven. The 

quotient  
Hours Device

r is considered an estimate of λ as opposed to the true λ. One reason being 

is that the group of devices under test is just a small sample of a much larger population. Since 
the manufacturer may have difficulty accumulating enough data to calculate true λ, he does the 
next best thing. He employs a Chi-Square statistical tool that relates the controlled test sample to 
the entire population. This tool allows him to calculate a “confidence interval” which provides a 
“statistical” upper bound for the true λ. The equation manufacturers are using is 
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=
χλ   [eq. 1]   where  is a statistical factor taken from the 

Chi-Square Table, with 2r+2 = degrees of freedom, and CL = confidence level.  
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Objective:  
This paper tries to explain the why and how Equation 1 works, and also where it comes from. 
 
Background Theory: 
Calculations for confidence level are based on the binomial distribution function described in 
many statistics textbooks. The binomial distribution function is written as 
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When we are interested in the probability that r or fewer events occur in n trials (or, conversely, 
that greater than r events occur), then the cumulative binomial distribution function (CDF) of 
Equation 2 is used as shown in Equations 3 or 4:  
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In terms of the cumulative binomial distribution function, the confidence level is defined as 
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where CL is the confidence level in percent. 
 

Now if n is very large, and q is very small, then the Poisson expression nq
k

e
k!
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conservative estimate of the binomial distribution term for term as shown by Equation 7. 
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     [eq. 7]         (See attached for a proof.) 

 
Joining Equations 6 and 7 together we get 
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where nq is the expected or mean value. 

In terms of Reliability, if λ = the constant failure rate of a component, and t = time in operation, 
then n can be replaced by t, and q replaced by λ, and λt will be the expected (mean) number of 

failures. This implies that 
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 =  probability of exactly r failures in time interval 

0 to t. Note that when writing each term out 
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reads P(r) = probability (0 failures) or probability (1 failure) or … or probability (r failures). 
Another way of saying this same thing is the probability of r or less failures in a time interval t. 
Replacing λt for nq in Equation 8 yields 
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It turns out that for a given CL, the term  is the exact λt solution to Equation 
10. So for example choosing CL = 60% or 1 − CL = 0.4, the following table shows exactly what 
the entries of the Chi-Square Table represent. 

2 / 2)2r CL,(12 +−χ

 
 
Chi-Square Table: 

Entries from Chi-Square Table 
(Probability, Degrees of Freedom)   

Failures (r) (1−CL, 2r+2) / 2   =  λt exact solution to 
0      (0.4, 2) / 2 = 0.916290731 0.4 =  te λ−

1     (0.4, 4) / 2 = 2.022313245 0.4 =  t]1[e t λλ +⋅−

2     (0.4, 6) / 2 = 3.105378597 0.4 =  ]! 2/t)(t1[e 2t λλλ ++⋅−

3     (0.4, 8) / 2 = 4.175262733 0.4 =  ]! 3/t)( ! 2/t)(t1[e 32t λλλλ +++⋅−

 

In other words t    
 2

2)2r CL,(12
λχ

=
+−  in column 2 yields the exact solutions to the Poisson 

distributions in column 3 of the above table. In other words the Chi Square Table solves for λt. 
(Note that the Chi Square Table does not solve for λ or t alone, but λt.) Now simply divide both 

sides of the above equation by t (device hours) to get  
t 2

2)2r CL,(1    
2 +−

=
χλ which is exactly 

Equation 1. // 
 
Note:  
The above method is reserved for devices that exhibit constant failure rates i.e. electronic 
devices. For devices that exhibit non-constant failure rates i.e. mechanical devices, other 
statistical methods should be employed which is a subject for another paper. 
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Notes on Chi-Square Table 
A user friendly Chi-Square Interactive Table can be accessed on line at 
http://math.uc.edu/~brycw/classes/148/tables.htm 
 
Both Microsoft Excel and MathCad have built in Chi-Square Table generators. Any entry of the 
Chi-Square Table can be determined using either one of those two programs.   2)2r CL,(12 +−χ
For Excel enter . For MathCad enter2)2r  CL,Chiinv(1 +− 2)2r qchisq(CL, +  
 
 
More Interesting facts on the Poisson Distribution 
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Therefore this Poisson Distribution is a discrete probability density function or PDF. 

The cumulative distribution function CDF is   
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For r = 0, 1, 2, 3, etc. is also discrete. 
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If n is large and q is small the Poisson Approximates the Binomial 
 
Theorem (Equation 6): 
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Proving Equation 6 using L'Hospital's Rule. 
Theorem 1: 
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Proof 
By using L'Hospital's Rule we see the relationship between x and  as x gets very small. xe1 −−
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Theorem 2: 
If n is very large, and q is very small, then 
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Since n is very large we can replace n–k with n and get 
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Since q is very small we can replace (1–q) with by L'Hospital's Rule. Therefore qe−
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