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Introduction:

Many electronic component manufacturers predict failure rates (1) of their devices by use of an
in-house testing process. For example the test may involve placing a certain number of
components in an oven, and allowing them to “bake” at a predetermined temperature for a
predetermined amount of time. At the end of the test, the number of failed devices are counted to
determine the values of r and “DeviceHours”, where r = number of failures, and DeviceHours =
number of surviving components times the number of hours they remained in the oven. The

: r . : . .
quotient ————— is considered an estimate of A as opposed to the true A. One reason being
DeviceHours

is that the group of devices under test is just a small sample of a much larger population. Since
the manufacturer may have difficulty accumulating enough data to calculate true A, he does the
next best thing. He employs a Chi-Square statistical tool that relates the controlled test sample to
the entire population. This tool allows him to calculate a “confidence interval” which provides a
“statistical” upper bound for the true A. The equation manufacturers are using is

- 72(1-CL, 2r+2)

2 x DeviceHours
Chi-Square Table, with 2r+2 = degrees of freedom, and CL = confidence level.

[eq. 1] where ;(2 (1-CL, 2r+2) is a statistical factor taken from the

Objective:
This paper tries to explain the why and how Equation 1 works, and also where it comes from.

Background Theory:
Calculations for confidence level are based on the binomial distribution function described in
many statistics textbooks. The binomial distribution function is written as

) n-k_k n.
P,(k)= ( J p q = where (kj is defined as [eq. 2] wherep+q=1

n!
k k!(n—k)!

When we are interested in the probability that r or fewer events occur in n trials (or, conversely,
that greater than r events occur), then the cumulative binomial distribution function (CDF) of
Equation 2 is used as shown in Equations 3 or 4:

T
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P(gSr)—I;)Pn(k) _Z[k!(n—k)!Jp q- [eq.3] or

k=0
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P(e>r1) =1 - P(¢<1) kzzm(k!(n—k)!jp q [eq.4]

Page 1 of 6



In terms of the cumulative binomial distribution function, the confidence level is defined as

_ 1 \ n! _n-k _k
CL=Pe>r=1 kzo{—k'( —k)!j(l qQ q [eq. 5] or

1-CL= Z(k'( _k)J 1=q)"*q*  [eq. 6]

where CL is the confidence level in percent.

e " provides a

k
Now if n is very large, and q is very small, then the Poisson expression —(nlil')

conservative estimate of the binomial distribution term for term as shown by Equation 7.

k
n! _sn-k _k _ (nq) -nq
(k!(n _ k)!j (-9~ "q" ~ K C [eq. 7] (See attached for a proof.)

Joining Equations 6 and 7 together we get

r-1 r
— CL = Z (nq) = e_nq{l +nq+---+ ((rrlci)l)! + (n?!) } [eq. 8]

where nq is the expected or mean value.

In terms of Reliability, if A = the constant failure rate of a component, and t = time in operation,
then n can be replaced by t, and q replaced by A, and At will be the expected (mean) number of

e ()’
r!

failures. This implies that P(r) = = probability of exactly r failures in time interval

0 to t. Note that when writing each term out

2 3
PO) = M, P(l)=e M. 4, PR)=e A —(/g)' , PG) =M —(’12 Jetc.

ORIy
(r 1)! 1!

reads P(r) = probability (0 failures) or probability (1 failure) or ... or probability (r failures).
Another way of saying this same thing is the probability of r or less failures in a time interval t.
Replacing At for nq in Equation 8 yields

r k r—1 r
1-CL =Z@e—4t R PR TSN O VM [eq. 10]
“ K c-1)! 1!

it becomes apparent that P(r) = e A {l + At + :l . [eq. 9] In words, Equation 9
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It turns out that for a given CL, the term ;(2(1—CL,2r+ 2)/2 is the exact At solution to Equation

10. So for example choosing CL = 60% or 1 — CL = 0.4, the following table shows exactly what
the entries of the Chi-Square Table represent.

Chi-Square Table:

Entries from Chi-Square Table
(Probability, Degrees of Freedom)

Failures (r) (1-CL,2r+2)/2 = M exact solution to
0 (0.4,2) /2= 0916290731 04= oM
1 (0.4,4) /2 =2.022313245 04=c . [1+ At]
2 (0.4, 6) /2 = 3.105378597 04=e M 14 At+ (102 /21]
3 (0.4,8) /2 = 4.175262733 04 =M 14 2t + (402 121+ ()3 /31]

72(1-CL,2r+2)
2

distributions in column 3 of the above table. In other words the Chi Square Table solves for At.

(Note that the Chi Square Table does not solve for A or t alone, but At.) Now simply divide both

72(1-CL,2r+2)
2t

In other words

= At in column 2 yields the exact solutions to the Poisson

sides of the above equation by t (device hours) to get 4 = which is exactly

Equation 1. //

Note:

The above method is reserved for devices that exhibit constant failure rates i.e. electronic
devices. For devices that exhibit non-constant failure rates i.e. mechanical devices, other
statistical methods should be employed which is a subject for another paper.
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Notes on Chi-Square Table
A user friendly Chi-Square Interactive Table can be accessed on line at
http://math.uc.edu/~brycw/classes/148/tables.htm

Both Microsoft Excel and MathCad have built in Chi-Square Table generators. Any entry of the

Chi-Square Table ;(2 (1-CL,2r+2) can be determined using either one of those two programs.
For Excel enter Chiinv(1- CL, 2r+2). For MathCad enter qchisq(CL, 2r + 2)

More Interesting facts on the Poisson Distribution

2 3

. % - X7 X . . e
The collection of terms e *, e *x, e * o X ETR is called the Poisson Distribution.

Note that the sum of all the terms is equal to one.

0 k 2 3
x X _ X7 X _
E e X =e X|:1+X4r7+—+~1 =e *-ef=1

) k! 3!
Therefore this Poisson Distribution is a discrete probability density function or PDF.
r k r—1 r
e . : —x X - X X
The cumulative distribution function CDF is Ze Y = Ml x4+ +—
K20 k! (r-n! !

Forr=0, 1, 2, 3, etc. is also discrete.
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If n 1s large and q is small the Poisson Approximates the Binomial

Theorem (Equation 6):

n-k k _ (@~ _

n!
If nislarge and q is small,then ———— e
geancd Ko-k° 1 k!

Proof :
n! n-k k nm-DHn-2)--(n-k+1) n-k _k .
— 1- sincep=1-—
Kin-lr 4 ! (=97 e P
nk k k
T (1-q" since n is large
k k K, _ 0
_n (-9 Q" q ~ 1 (-9~ Q" q _ (97 d-9 since q is small (1)
k! (l—q) k! 1 k!

now compare (1— )n with e nq by expanding each of them.
n(n-—1 nn—-1)n-2
( )q2 ( X )q3

(I-q)" =1-nq +

2! 3!
zl—nq+n2—2!q2—n3—3!q3+ e = 1- nq+( (2:1') (IZL'P - since n is large
(1-q" ~ 1 nq+(“§!)2 (“3%)3 e
N dong DD _0OT, g

comparing (2)and 3) = (1-q)" = e ™ (4)

k
. - . ! — (nq)~ -
Replacing e ™ for (1-q)" in (1) we get _m on-kgk ~ —2 e My
P 8 (1=aq) M & k!(n—k)!p q k!
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Proving Equation 6 using L"Hospital’s Rule.
Theorem 1:

. x . L
lim,_,1-e" =x or lim_, 1-x=¢e

Proof
By using L'Hospital's Rule we see the relationship between x and 1—e™™ as x gets very small.

fx) 1-e¢* 0 f'x) e 1-e™

lim = = — and lim = =1 = lim =1 =
x—0 g(X) X 0 x—0 g '(X) 1 x—0 X

lim,,, l-e™* =x or lim_, l-x=¢"

Theorem 2:

If n is very large, and q is very small, then

| k
P, (k) =(—k!(nn;k)!j(1—q)“qu A (“E!) e ™

Proof

P,(0) =(1-9)"

P,(1) =n(1-q)""'q

P (2) -M=DI-9"q’
" 2!

p (3) =M -DO-2)(1-9""¢’
" 3!

, etc. by definition.

Since n is very large we can replace n—k with n and get
P,(0) =(1-q)"
P, (1) =n(1-q)"q

2 n_2
n“(1-
P =

3 n 3
P =T
Since q is very small we can replace (1-q) with e by L'Hospital's Rule. Therefore
P (0) =(e™)" =™

P,(1) =n(c™)"q = nge ™

(e )'q’ _ (ng)’e™

, etc.

B @) ==, 2
3/,—q\0 3 3.-nq
P (3) == (63') Q¢ _ae T oy
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