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Chapter 8 Numerical Analysis

Introduction (Needs Work)

When large amounts of failure data of a particular device are available, obtaining an accurate failure distribution
curve is a relatively straightforward process using standard statistical techniques. However, when failure data is
scarce, various assumptions are made, and oftentimes curve fitting techniques are employed.

1. The primary advantage of Weibull analysis is the ability to provide reasonably accurate failure analysis and
failure forecasts with extremely small samples.
2. Another advantage of Weibull analysis is that it provides a simple and useful graphical plot.

In addition to the above, Weibull has another advantage. Weibull equations are integrable, and can be designed to
curve fit (approximate) numerical integrations of various non-integrable functions. One of which is the Normal
failure density function (fdf). What this means is that a Normal Probability of Failure Function, which is an
integration of the Normal fdf, can be expressed with the luxury of an equation as opposed to an integration process.
This feature of Weibull becomes very attractive when numerical integration tools are not available. This feature is
illustrated by the following problem:
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Example 1 Weibull P; Approximation of a Normal Distribution

A tire has a u = mean life of 100,000 miles, with s = sigma of 20,000 miles, and with k = miles already logged =
5000 miles. Derive the P; equation as a function of t miles.

This approach uses a process of solving three simultaneous equations based on three known points of intersection of
the actual Normal P¢ curve. It is somewhat more complicated than the “1 point” method, but yields much more
accurate results.

_[ E }
a
The Weibull equation is Py = F(t)=1-¢ with ¢ =3.4564775, a=2ns's/m, where m=1.00545149,
1

ns is a real number (selected for best fit) such that 0 <ns <3.9,and b=u—(a[-In(0.5)]¢ +k).

Note the above P; equation is not defined for t—b < 0. Therefore this method must be “piecewise” defined. Define P
=0 for 0 <t<b, and P; as shown on the graph below for b <t.

_K t—32.384j 3.456}
. 69.620 .
In thisexample Py = 1—¢ usingu =100,s =20,k =5,and ns =1.75.

Note that the above P¢ equation is not defined for t <b = 32.384. Therefore this method must be “piecewise”
defined. Define Py =0 for 0 <t <b, and Py as shown above for b <t.

The following is a graph of the tire P;calculated using a numerical integration technique together with the above
Weibull approximation. Notice the very close fit.

Graph of Modified Weibull Approximation vs. Normal P
(mean = 100000, sigma = 20000, miles logged = 5000)

. Mod Weibull Pf = 1-e™-[((t-32.384)/69.620]"3.456)
Retun  “iew Prnt Time MNotePad [Mech]

v
TY

1 S R N R R,

1 O I e

W eibuill

Mumerical Integration . .. [ .. ..o oo

oo 2000 o0 000 £0.00 100.00 120,00 140,00 160.00 180.00 200,00
bdiles = 1000

Figure 7-1

7-3
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Derivation of the Weibull Method of Approximating a Normal Failure Distribution
This discussion describes the details of how the parameters of the Weibull Method were derived. It is quite lengthy
and can be skipped over without loss of any information pertaining to its applications.

| (=B
)
predetermined points. The three points of intersection are designed to occur at Py = 0.5 — ar, Py = 0.5, and Py = 0.5 +
ar. The term ar (area under the Standard Normal Curve) corresponds to a selected ns (normalized sigma) which
defines two of the three points. ns =1 corresponds to an ar = .3413, ns = 2 corresponds to ar = .4772 etc. as listed in
a Standard Normal Distribution Table. So for example if a and ¢ were calculated using ns = 1.75, the Modified
Weibull Curve will intersect the Normal P¢ Curve at Py= (0.5 — 0.4599), Py =(0.5), Py = (0.5 + 0.4599) in other

words /2 + 1.75 sigma of area.
This approach involves the solution of three simultaneous equations with three unknowns.

The approximation equation F(t)=1—e , can be constructed to intersect the Normal P; Curve at three

[ B 1

a

Define Py = 1-¢ such that Pr =0.5 whent=u -k,

Pf=0.5+ar whent=u—-k+ns-s, andPf =0.5—arwhent=u—-k -ns-s=

C C
{e=]_ =] :
05=1-¢e =0.5=u—-k-b =a[-In(0.5)]¢
{[u—k-r:s-s b 1 [ u k+ns-s— b C} @)
05+ar=1-e¢ =e =0.5—-ar
_[(u—k—:s-s b 1 [ u k—ns-s— b } 3)
05—ar=1-e¢ = e =0.5+ar
1 1
(2)and(3) = u—k+ns-s—b =a[-In(0.5-ar)] ¢, u—-k-ns-s—b =a[-In(0.5+ar)] ¢ = 4)

1 1
b=u-k+ns-s—a[-In(0.5+ar)]® =u-k—-ns-s—a[-In(0.5—ar)/a]®
1 1 1 1

2-ns-s =a[-In(0.5—-ar)]® — a[-In(0.5+ar)]° = 2-ns-s/a=[-In(0.5-ar)]® - [-In(0.5+ar)]® =

1 1 1 1

(5) =(6) > m=2q =[-In(0.5-ar)]¢ — [-In(0.5+ar)]¢ = 2|[-In (0,5)]; — [-In (0.5+ar) ]Z

1 1

a=2ns's/m where m= [-In(0.5—ar)]¢ - [-In(0.5+ar)]¢

(5)
Note: ns = 1.75 => a = 3.48078264044765s|
1 1
from(4)and (1) u—-k—ns-s—b =a[-In(0.5+ar)]¢ and u—-k-b =a[-In(0.5)]¢
1 1
a=ns's/q where q=[-In(0.5)]¢ — [-In(0.5+ar)]¢ (6)
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1 1 1
6]‘[2;1%]{16&059)&;1154‘?&31(g'ga_fyaé%] €+ [-In(0.5—-ar)]¢ (Note that c is a function of ar.)

(N

The equation (7) can be solved using a Taylor Series method which is a subject for another

paper. Rather than a time consuming development, recall that c is a function of ar, ar is a function of ns
(normalized sigma), and therefore c is a function of ns. This function was obtained utilizing the above
equation in conjunction with a curve fitting method using the following data.

ns ar C

S5 0.191462461275692  3.27504943957515
1 0.34134474609543 3.32363473186359
1.5 0.43319279877211 3.4045530388795
1.75 0.459940843131247  3.45680410401036
2 0.477249867955804  3.51649846691278
2.5 0.493790334365092  3.65613580018552

[c =-0.006224132ns>+0.089994945ns > — 0.031275449ns + 3.269690806 _where 0 <ns < 3.9] (®)

Note: ns = 1.75 was chosen for the calculation of ¢ to force intersections at /2 + 1.75 sigma of area.

ns = 1.75 => ¢ =3.45721082957605

The following equation for b will force the Modified Weibull Curve to intersect at Py = 0.5. Recall that b is
solved such that Py = 0.5 whent=u —k.

a a

By substitution of Pr=0.5,t=u—kin Pf =1-¢ we get 0.5=1-¢
C
_{ (u—k—bj } | |
a l l
=0.5 = (u-k-b)/a=[-In(0.5)]¢ = b=u-(a[-In(0.5)]¢ +k) =
| b=u—3.130874117s —k forns=1.75]
Therefore given a mechanical device whose Normal Distribution of failure has a mean = u, and a sigma ='s,

and k = the number of units (miles, hours, etc) already logged on the device, then using ns = 1.75,
a=3.48078264s,b=u—3.130874117s — k, ¢ = 3.457210829, and

{ (t—u +3.13087411 Ts + k) 343721082 9]
Pr=1-e¢

€

3.48078264 s
for t>u-3.130874117s and

Pe=0 fort <u-3.130874117s
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Example 2 Weibull P; Approximation of Two Mechanical Devices in Series
A motorcycle has tirel with u=100, sigma = 20, and 10k miles logged. The other tire2 has a u=90, sigma = 30, and
20k miles logged. Calculate the Py due to wearout using the Modified Weibull Approximation Method.

Logic Diagram

F(t) =tire1P; and G(t) = tire2 P
P, = F(t) + G(t) - F(t) G(t)

Selecting ns=1.75 => a=3.48078264044765s, b=u-3.130874117s -k,
and ¢ = 3.4564775,

F(t) G(t)

{ (t—blj c}
Fit)=1-¢ L* &l al = 69.620464 and bl=27.383926

[t—ij C}
a2 a2 = 104.430697 and b2 =—23.924111

Mt—bljc (t—b2]01
- +
al a2
Pr = F(t) + G(t) - FOG() = 1—e¢
{ [t—27.384j3'456 . [t +23.924j3'456}
69.620 104.431
=Pr=1-¢

Note that the above equation is not defined for t <27.384 and therefore the P must be “piecewise” defined as
follows:

B [t+23.924]3'456
104.430
Pr=1-¢

G(t)=1- e{

for t <27.384

t—27.384 3'456+ £+23.924 )40
69.620 104.431

and Py =1-¢ {[ for 27.384 <t

See Figure 7-2
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Modified Weibull Approx. vs. NI of 2 Mechanical (Normal) Devices in Series
. Mod Weibull Pf = 1-e”{((t-27.384)/69.620]" 3. 456+([t+23.924)/104.431)"3.456)

Return Yiew Frint Time  MotePad [Mech)]
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Figure 7-2



Chapter 8 Numerical Analysis

Example 3 Weibull P; Approximation of n Mechanical Devices in Series
A certain system (machine) is made up of n mechanical devices. System failure is defined to be a failure of any one
of the n devices. Device 1 has a mean of uy, a sigma of s;, and hours logged

= k,. Similarly device 2 has a u,, s, and a k,, and device n has a u,, s,, and a k,. Derive an equation to calculate the
P; due to wearout of this system.

Logic Diagram

P,

Where fi(t) = devicel Py, f5(t) = device 2 Pyand f,(t) = device n P; =

|:( t—bl J C:I
NI 1
f=1-¢

where a1 =3.48078264044765s; and b; = u; —k; —aj [-In(0.5)] ¢ and

C
| l
- } where ay =3.48078264044765s5, and by = uy —ky —ap [-In(0.5)] ©

{2 1
£ ()=1-¢ L\ 0

wherea, =2ns-s, /m, and b, = u, -k, —ap [-In(0.5)] c

a (t—bz
fr(t)=1-¢ L* 22

C

el b
o = b J‘ri(x)dxz(t bIJ,

C a;
1
0

n t
A % frea
and Py (sys)=1—-¢ \710 =

Pr(sys)=1-e
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Example 4 Four Mechanical Devices in Series
A car has 4 tires. Assume for the sake of simplicity all 4 tires have a u = 100, sigma = 20, and 10k miles logged.

Calculate the P due to wearout.
Mtby [tbjc [tbje (tbﬂ [ [tbﬂ
| — +|— + | — |+ | — -4 | —
a a a a a
Pr=1-e =1-e

{ (t—27.384]3'451
—| g =727

1 69.620

where ¢=3.456, a=2ns-s/m, b = u—k—-a[-In(0.5)] ¢ = Pr=1-¢

where t is measured in units of 1000 miles.

Modified Weibull Approx. of 4 Mechanical (Normal) Devices in Series

. PI[150] = 0.99999999999668 B
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Example 5 Mechanical Device in Series with an Electrical Device
A simple system is made up of a mechanical device in series with an electrical device. The mechanical device has u
=100, sigma = 20, with 10 hours logged. The electrical device has a failure rate of .01 failures per hour. Calculate
the Pr of the system.

Logic Diagram

P, =F(t) + G(t) - F(t) G(t)

where F(t) = P; (mech) and G(t) = P (elect.) =>
F(@) G(t)

t—bjc}
I\ 1
F(t)=1-¢ K a where a=2ns-s/m, and b = u—-k—a[-In(0.5)] ¢ and

C
a

G(t)= 1—e ™ where 1=.01

and

t-27.384 )34
t-2roes +.01t
69.620

Now Pp =F(t)+ G(t) - F()G(t) = 1 —e M

u=100, s=20, k=10, A=.01 = Pr=1-¢ [

Numerical Integration vs. Weibull Approx. of a Mechanical Device in Series with an Electrical

. Weibull Pf = 1-e™-([[t-27_384)/69.620)"3.456+.01"t)
Retun  “iew Prnt Time MoteFPad [Mech]
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Example 6 Mechanical Device in Standby with a Mechanical Device

A simple system is made up of one mechanical device in operation with a second mechanical device on standby.
Upon detection of failure of the operating device, the second device is immediately turned on and placed into
operation. The first mechanical device has u = 100, sigma = 20, with 10 hours logged. The standby mechanical
device has u =100, sigma = 20, with 30 hours previously logged. Calculate the P of the system.

Setu; =100, s; = 20, k; =10, u, = 100, s, =20, and k, =30, ns = 1.75, m = 1.00545148831.
{(t—b”
a
P (standby)= 1—-¢ where ¢ =3.4564775, a= @\'512 + 522 and
m
| B [t—71.447]3'456
98.458

b=up+us - (k; +ky)—a[In(0.5)]¢ = P(standby) = 1—e

To be redone

i Weibull Pf = 1-e™-[[[t-72.189)/98.458]"3.456)

Retun Wiew Prnt Time MNotePad [Mech)

v=
T 2
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Numerical Integration vs. Weibull Approx.
Mechanical Device in Standby with a Mechanical Device

Figure 7-
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Example 7 n Mechanical Devices in Series with 1 on Standby

This example outlines a procedure for solving the classic problem as outlined here:

A car has 4 tires with one spare in the trunk. One tire goes flat (fails). The flat is removed and the spare tire is
installed. The car travels on until another flat occurs. Calculate the probability of the entire event.

t—bl

i (b2
a as
= P¢ (first flat) = P¢ (4 tires in series). Let G(t)= 1—¢ = Py (spare)
f f f

t fer
c(x—bl)c_le a) |

From Convolution Theorem Pg (sys)= J. F (x) G(t — x)dx where F x)=
0

a (t—bl ]C a [t—bz ]C
j(x—b el ! e b
1) e (1-e ) dx

0

LetF(t)=1-¢ “
c

aj

c
Pg (sys)= —
a1
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Derivation of a Mechanical Device in Standby with a Mechanical Device

Given a simple system of two normally distributed devices with parameters ul, sl, k1, and u2, s2, k2, with one
device in standby of the other, then the system probability failure distribution is normal with u, s, and k, such that
1

u=uj+us, s:wlslz+szz, and k=kj +kj.

Recall from Example 1 a=2ns's/m, and b=u—(a[-In(0.5)]¢ + k). Then by substitution

2ns
a=2nss/m = a:—\lslz +s22 and
m

1 1
b=u—(a[-In(0.5)]¢ +k) = b=uj+uy —(a[-In(0.5)]¢ +k{ +k7)
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Derivation of the Weibull Method of Approximating an Electrical Standby Electrical
This discussion describes the mathematical details of how the parameters of the Weibull Method were derived. It is
quite lengthy and can be skipped over without loss of any information pertaining to its applications.

(=0
a
The approximation equation F(t) =1—¢ , can be constructed to intersect the Standby P Curve at

three predetermined points. The three points of intersection are designed to occur at t;, t,, and t;. This approach
involves the solution of three simultaneous equations with three unknowns.

Given an electrical device in operation with failure rate A, with another electrical device powered off on standby
with failure rate B, calculate the probability of a system failure.

_Mt_bﬂ
a
P¢(standby) = l—ie_’It +Le_ﬂt =1l-e =

p—A p—-A
{6=] 165
e LV ? IRy L P = fit;) fori=1,2,3=>
p—-A -1
1 1 1
b = tj —a(-In[f(t;)])¢ = (t3 —t;)/a = (-In[f(t2)])¢ - (-In[f(t;)])¢ and
1 1
(t3 —tp)a = (-In[f(t3)])¢ —(-In[f(tp)])¢  Selecting t,,t,, and t; such that tr—t; = t;—t,
1 1 1 1

(—In[f(t2)])® —(-In[f{t)])€ = (In[f(t3)])€ — (In[f{ty)])¢ =

th —t
From(l) a = 21 1 T

(-In[ft)])€ —(-In[fephHe |

(t; —tp) (=Inffty)D ¢
1 1

(-In[f(t2)])¢ ~ (~In[f(t)])¢
1 1 1

2(-In[f(t2)) € = (-In[f(t3)] )E + (—In[f(t})] )g See Appendix for calculation of c.

Againfrom(l) b = ty +

7-14
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Derivation of the Weibull Method of Approximating a Lognormal Failure Distribution

This discussion describes the mathematical details of how the parameters of the Weibull Method for the Lognormal
Failure Distribution were derived. Recall that the Lognormal Distribution is a Normal Distribution of In(t) as
opposed to t. Therefore substitute In(t) for t in the Weibull F(t) equation and get

Ft)=1-¢ M ¢ ]

(miles) logged. To make the adjustment

o (remery ]

1
b=u-a[-In(0.5)]¢

. However this equation would be correct if k=0 i.e. if the device had no previous hours

define Py = 1-e such that a and c are the same as for the Normal calculatio n, and
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Derivation of the Polynomial Method of Approximating a Normal Failure Distribution

Given a Normal Failure Distribution with mean u and sigma s, then the Py can be very closely approximated by

Lp(oy-abspv))]
Pr =F(t)=1-¢2

where P(t) =a(t + hl)> +b(t +hl)? +c(t + hl) +d, hl = hours (units) previously logged,
a=— 0.40861530764759/s’
b = 0.122584592294277 w/s® — 0.305630571871765/5>
= —0.122584592294277 u¥/s> + 0.61126114374353 u/s>— 0.782437098467209/s (1)
d = 0.0408615307647492 u’/s® — 0.30560571871749 u/s* + 0.782437098467209 /s — 0.693147180559944

Coefficients a, b, ¢, and d were derived as follows:

Assume Py=1-¢ PO Where P(t) is a polynomial = Ps =¢ PO P(t) = In(Ps). Four points on the t axis are
strategically chosen such that t; =u— 11s/4, t,=u—7s/4, t; =1, and t, =u+ 7s/4. This yields four simultaneous
equations P(t;) = In(Ps;), P(t;) = In(Ps,), P(t;) = In(Ps3), P(ts) = In(Psy) where Ps; = probability of success measured
at ti. Note that Ps; are constant for any u and s. In fact Ps; = 0.997020236402405, Ps, = 0.959940843131253,

Ps; = 0.5, and Ps,; = 0.0400591568687467 extracted from a Normal Cumulative Distribution Table. Therefore

P(t,) = In(0.997020236402405) = —0.00298421193199815
P(t,) = In(0.959940843131253) = —0.0408836181572305
P(t;) = In(0.5) = —0.693147180559945

P(t) = In(0.0400591568687467) = —3.21739799567722

The strategy is to “curve fit” the four points (t; , In(Ps;)) with a polynomial curve of order three. The coefficients a, b,
¢, and d, of the polynomial P(t) = at’ + bt* + ct + d can be derived using a curve fitting software program. For
example if u =100 and s = 20, the result will be

P(t) =-0.000005 1076913456t +0.00076823 0973998t 2 — 0.0395373093552962t + 0.685965360578848

However, the software program will not derive a, b, ¢, and d in algebraic form as shown above. Every time u or s is
changed, the program would have to be rerun to determine the new P(t). The derivation of the coefficients in
algebraic form can be accomplished utilizing the method for solving a set of simultaneous equations using
determinants.

0 62 1| |-11s4)> @u-11s4) (u-11s/4) 1
3 2 3 2
53 2ty 1| |(u=7s4)° (u-7s/4)% (u-7s/4) 1| 33957 ¢
Let|Al=] 7 % - 3 2 T 256
t3” 17t 1 u u u 1
t 3 2 3 2
4” tg” tg 1 (u+7s/4)" (u+7s/4)° (u+7s/4) 1
P(t) (u—11s/4} (u—11s/4) 1
P(ty) (u-7s/4 u—7s/4) 1
Let| Af| = @ 7 V1 2 s 4200585944891
P(t3) u? u 1
P(ty) (u+7s/4Y (u+7s/4) 1
(u—11s/4) P(ty) (u—11s/4) 1
~7s/4Y P(ty) (u-7s/4) 1
e PR W= 1| 017583346 s - 40.54022301 5997

u Pt;) u 1

(U+7s/4) P(ty) (u+7s/4) 1
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(u—11s/4y (u—11s/47 P(t)) 1

u—"7s/4 u-—"7s/4Y P(t 1
|A3| = ( )3 ( )2 (t2) = —16.260175?@33468u253+81.080447831994us4—103.78600215879355

u W P() 1

(u+7s/4) (u+T7s/4¢ P(ty) 1

(u—11s/4) (u-11s/4)% (u—11s/4) P(t;)

™ (u-7s/4)° (u-7s/4)> (u-Ts/4) P(12)
4 = =
u’ u? u P(t3)

(u+7s/4)> (u+7s/4)> (u+7s/4) Pty)

5.42005859444761u°s> —40.5402239415976 u%s* +103.786002158792 us> —91.9421828526329 5°

Al L fAa Al [Ag .
and therefore a = —, =-——, ¢ = ——, d = ——asdefinedin (1).

A [A] A [A]
The graph below compares a polynomial fit labeled “Y1 =1-e”P(t)” with a numeric integration of a Cumulative
Normal Distribution Curve with u= 100 and s = 20. Note the perfect fit for t > 42 along with the complete miss of the
mark for t <42. The fix is rather simple. Define the P(t) equal to zero whenever it is positive i.e. define

Y1 =P¢=

Polynomial Curve Fit vs. Numeric Integration

. 1 = 1-e™[a™t"3+b*t" 2 +c t+d] 2 = norm(100.20.t)

Return
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Numerical Analysis a Normal Failure Distribution (CDF)

Given a Normal Failure Distribution with mean u and sigma s, then the Pr can be very closely approximated by

{i=7].

quﬂ
o 1 20 s
PDF of Normal Distribution = f(x) = e = CDF=F(t)= I X

27r's 27rs

{1 X—u 2]

1ol < 2

2\ s —

Let gx)=e andz:—%(uj then

g(X)=eZ=1+Z+22/2!+z3/3!+z4/4l BTN
t t lt t 1 t 6 1 . ]
o 3 e i -
S ! 31 s 4 s
0 0 0 2721 0 2 3'0 2 4.0
(t-u)s (t-uys n+l n+l
Letv=2—% = dx=sdv and J( j dx = J-svndv = 5 |yl o -y +u
° n+l "y (n+1)~sn
—u/s
Jowoe = ¢ - Gowieed eowteed gcwlenl
3.2.52 5.22.21.64 7.23.31.40

2n+1 2r1+1

t
J.g(x)dx = Z( n" (t-w
0

~ @n+1)-2" .nt.s2"

2n+1 2n+1

t t t 0
1 1 1 (t-uw) +u
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	Chapter 8
	 Derivation of the Weibull Method of Approximating a Normal Failure Distribution
	This discussion describes the details of how the parameters of the Weibull Method were derived. It is quite lengthy and can be skipped over without loss of any information pertaining to its applications. 
	 
	 
	(1)
	 
	(2)
	 
	(3)
	 
	(4)
	 
	 
	a = 2ns∙s / m  where m =  
	(5)
	from (4) and (1)        and      
	a = ns∙s / q  where q =  
	(6)
	(7)
	The equation (7) can be solved using a Taylor Series method which is a subject for another 
	paper. Rather than a time consuming development, recall that c is a function of ar, ar is a function of ns (normalized sigma), and therefore c is a function of ns. This function was obtained utilizing the above equation in conjunction with a curve fitting method using the following data.
	  ns                   ar                                    c
	  .5      0.191462461275692      3.27504943957515
	  1       0.34134474609543        3.32363473186359
	 1.5     0.43319279877211        3.4045530388795
	 1.75   0.459940843131247      3.45680410401036
	  2       0.477249867955804      3.51649846691278
	 2.5     0.493790334365092      3.65613580018552
	 c = (0.006224132ns3+0.089994945ns 2 ( 0.031275449ns + 3.269690806    where 0 < ns < 3.9      
	(8)
	The following equation for b will force the Modified Weibull Curve to intersect at Pf  = 0.5. Recall that b is solved such that Pf  = 0.5 when t = u – k. 
	By substitution of Pf  = 0.5, t = u – k in  we get  
	 
	 
	Therefore given a mechanical device whose Normal Distribution of failure has a mean = u, and a sigma = s,
	and k = the number of units (miles, hours, etc) already logged on the device, then using ns = 1.75,
	a = 3.48078264s, b = u – 3.130874117s – k, c = 3.457210829, and
	 for  t ≥ u (3.130874117s  and  
	Pf = 0 for t < u (3.130874117s  

	Note that the above equation is not defined for t < 27.384 and therefore the Pf must be “piecewise” defined as follows:
	  for t < 27.384
	  for 27.384 ≤ t
	See Figure 7-2
	 Example 3 Weibull Pf  Approximation of n Mechanical Devices in Series
	 
	  Example 5  Mechanical Device in Series with an Electrical Device
	Example 6  Mechanical Device in Standby with a Mechanical Device
	 Example 7  n Mechanical Devices in Series with 1 on Standby 
	 
	Derivation of a Mechanical Device in Standby with a Mechanical Device
	 Derivation of the Weibull Method of Approximating an Electrical Standby Electrical

	This discussion describes the mathematical details of how the parameters of the Weibull Method were derived. It is quite lengthy and can be skipped over without loss of any information pertaining to its applications. 
	Given an electrical device in operation with failure rate λ, with another electrical device powered off on standby with failure rate β, calculate the probability of a system failure.
	Pf (standby) =  
	  for i = 1, 2, 3 =>
	 
	(1)
	     Selecting t1,t2, and t3 such that t2–t1 = t3–t2
	 
	 See Appendix for calculation of c.
	Derivation of the Weibull Method of Approximating a Lognormal Failure Distribution

	This discussion describes the mathematical details of how the parameters of the Weibull Method for the Lognormal Failure Distribution were derived. Recall that the Lognormal Distribution is a Normal Distribution of ln(t) as opposed to t.  Therefore substitute ln(t) for t in the Weibull F(t) equation and get 
	 
	 
	 Derivation of the Polynomial Method of Approximating a Normal Failure Distribution

	Given a Normal Failure Distribution with mean u and sigma s, then the Pf  can be very closely approximated by
	 
	a = ( 0.40861530764759/s3
	(1)
	Coefficients a, b, c, and d were derived as follows:
	Assume Pf = 1(e P(t) where P(t) is a polynomial ( Ps = e P(t) ( P(t) = ln(Ps). Four points on the t axis are strategically chosen such that  t1 = u ( 11s/4,  t2 = u ( 7s/4,  t3 = u,  and  t4 = u + 7s/4. This yields four simultaneous equations P(t1) = ln(Ps1),  P(t2) = ln(Ps2),  P(t3) = ln(Ps3),  P(t4) = ln(Ps4) where Psi  = probability of success measured at ti. Note that Psi are constant for any u and s. In fact Ps1 = 0.997020236402405, Ps2 = 0.959940843131253,
	Ps3 = 0.5, and Ps4 = 0.0400591568687467 extracted from a Normal Cumulative Distribution Table. Therefore
	  
	 
	 
	 
	 
	 
	The graph below compares a polynomial fit labeled “Y1 =1-e^P(t)” with a numeric integration of a Cumulative Normal Distribution Curve with u = 100 and s = 20. Note the perfect fit for t > 42 along with the complete miss of the mark for t < 42. The fix is rather simple. Define the P(t) equal to zero whenever it is positive i.e. define 
	Y1 = Pf = 
	Polynomial Curve Fit vs. Numeric Integration
	  
	Numerical Analysis  a Normal Failure Distribution (CDF)


	Given a Normal Failure Distribution with mean u and sigma s, then the Pf  can be very closely approximated by
	 
	 
	 



