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Chapter 8  Numerical Analysis 

Introduction (Needs Work) 
When large amounts of failure data of a particular device are available, obtaining an accurate failure distribution 
curve is a relatively straightforward process using standard statistical techniques. However, when failure data is 
scarce, various assumptions are made, and oftentimes curve fitting techniques are employed. 
  
 

1. The primary advantage of Weibull analysis is the ability to provide reasonably accurate failure analysis and 
failure forecasts with extremely small samples. 

2. Another advantage of Weibull analysis is that it provides a simple and useful graphical plot. 
 
In addition to the above, Weibull has another advantage. Weibull equations are integrable, and can be designed to 
curve fit (approximate) numerical integrations of various non-integrable functions. One of which is the Normal 
failure density function (fdf). What this means is that a Normal Probability of Failure Function, which is an 
integration of the Normal fdf, can be expressed with the luxury of an equation as opposed to an integration process. 
This feature of Weibull becomes very attractive when numerical integration tools are not available. This feature is 
illustrated by the following problem: 
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Example 1  Weibull Pf  Approximation of a Normal Distribution 
A tire has a u = mean life of 100,000 miles, with s = sigma of 20,000 miles, and with k = miles already logged = 
5000 miles. Derive the Pf equation as a function of  t miles. 
This approach uses a process of solving three simultaneous equations based on three known points of intersection of 
the actual Normal Pf  curve. It is somewhat more complicated than the “1 point” method, but yields much more 
accurate results.   

The Weibull equation is Pf  =
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Note the above Pf equation is not defined for t−b < 0. Therefore this method must be “piecewise” defined. Define Pf  
= 0 for 0 ≤ t < b, and Pf  as shown on the graph below for b ≤ t.  
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Note that the above Pf  equation is not defined for t < b = 32.384. Therefore this method must be “piecewise” 
defined. Define Pf  = 0 for 0 ≤ t < b, and Pf  as shown above for b ≤ t.  
The following is a graph of the tire Pf calculated using a numerical integration technique together with the above  
Weibull approximation. Notice the very close fit. 
 
Graph of Modified Weibull Approximation vs. Normal Pf   
(mean = 100000,  sigma = 20000,  miles logged = 5000) 

 
Figure 7-1 
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Derivation of the Weibull Method of Approximating a Normal Failure Distribution 
This discussion describes the details of how the parameters of the Weibull Method were derived. It is quite lengthy 
and can be skipped over without loss of any information pertaining to its applications.  

The approximation equation 
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predetermined points. The three points of intersection are designed to occur at Pf  = 0.5 − ar, Pf  = 0.5, and Pf  = 0.5 + 
ar. The term ar (area under the Standard Normal Curve) corresponds to a selected ns (normalized sigma) which 
defines two of the three points.  ns = 1 corresponds to an ar = .3413, ns = 2 corresponds to ar = .4772 etc. as listed in 
a Standard Normal Distribution Table. So for example if a and c were calculated using ns = 1.75, the Modified 
Weibull Curve will intersect the Normal Pf Curve at Pf = (0.5 − 0.4599),  Pf  = (0.5),  Pf  = (0.5 + 0.4599) in other 
words ½  ± 1.75 sigma of area. 
This approach involves the solution of three simultaneous equations with three unknowns. 
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The equation (7) can be solved using a Taylor Series method which is a subject for another  
paper. Rather than a time consuming development, recall that c is a function of ar, ar is a function of ns 
(normalized sigma), and therefore c is a function of ns. This function was obtained utilizing the above 
equation in conjunction with a curve fitting method using the following data. 
 

 

  ns                   ar                                    c 
  .5      0.191462461275692      3.27504943957515 
  1       0.34134474609543        3.32363473186359 
 1.5     0.43319279877211        3.4045530388795 
 1.75   0.459940843131247      3.45680410401036 
  2       0.477249867955804      3.51649846691278 
 2.5     0.493790334365092      3.65613580018552 
 

 

 c = −0.006224132ns3+0.089994945ns 2 − 0.031275449ns + 3.269690806    where 0 < ns < 3.9       (8) 
 
Note: ns = 1.75 was chosen for the calculation of c to force intersections at ½  ±  1.75 sigma of area. 
ns = 1.75 => c = 3.45721082957605 

 

The following equation for b will force the Modified Weibull Curve to intersect at Pf  = 0.5. Recall that b is 
solved such that Pf  = 0.5 when t = u – k.  

 

By substitution of Pf  = 0.5, t = u – k in 
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Therefore given a mechanical device whose Normal Distribution of failure has a mean = u, and a sigma = s,  
and k = the number of units (miles, hours, etc) already logged on the device, then using ns = 1.75,  
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Example 2  Weibull Pf  Approximation of Two Mechanical Devices in Series 
A motorcycle has tire1 with u=100, sigma = 20, and 10k miles logged. The other tire2 has a u=90, sigma = 30, and 
20k miles logged. Calculate the Pf due to wearout using the Modified Weibull Approximation Method. 
 
         Logic Diagram 

F(t)  G(t)

Pf  = F(t) + G(t) - F(t) G(t)

 

F(t) = tire1Pf  and  G(t) = tire2 Pf 
 
Selecting  ns = 1.75   =>   a = 3.48078264044765s,  b = u – 3.130874117s – k,  
and c = 3.4564775,    
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See Figure 7-2 
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Modified Weibull Approx. vs. NI of 2 Mechanical (Normal) Devices in Series 

 
Figure 7-2 
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Example 3 Weibull Pf  Approximation of n Mechanical Devices in Series 
A certain system (machine) is made up of n mechanical devices. System failure is defined to be a failure of any one 
of the n devices. Device 1 has a mean of u1, a sigma of s1, and hours logged 
= k1. Similarly device 2 has a u2, s2, and a k2, and device n has a un, sn, and a kn. Derive an equation to calculate the 
Pf due to wearout of this system. 
 
         Logic Diagram 
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Where f1(t) = device1 Pf , f2(t) = device 2 Pf and  fn(t) = device n Pf  ⇒ 
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Example 4  Four Mechanical Devices in Series  
A car has 4 tires. Assume for the sake of simplicity all 4 tires have a u = 100, sigma = 20, and 10k miles logged. 
Calculate the Pf due to wearout. 
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Modified Weibull Approx. of 4 Mechanical (Normal) Devices in Series 
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Example 5  Mechanical Device in Series with an Electrical Device 
A simple system is made up of a mechanical device in series with an electrical device. The mechanical device has  u 
= 100, sigma = 20, with 10 hours logged. The electrical device has a failure rate of .01 failures per hour. Calculate 
the Pf of the system. 
         Logic Diagram 

F(t)  G(t)

Pf  = F(t) + G(t) - F(t) G(t)
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Numerical Integration vs. Weibull Approx. of a Mechanical Device in Series with an Electrical 

 
 

7-10 



Chapter 8  Numerical Analysis 

Example 6  Mechanical Device in Standby with a Mechanical Device 
A simple system is made up of one mechanical device in operation with a second mechanical device on standby. 
Upon detection of failure of the operating device, the second device is immediately turned on and placed into 
operation. The first mechanical device has  u = 100, sigma = 20, with 10 hours logged. The standby mechanical 
device has  u = 100, sigma = 20, with 30 hours previously logged. Calculate the Pf of the system. 
 
Set u1 = 100, s1 = 20, k1 = 10, u2 = 100, s2 = 20, and k2 = 30, ns = 1.75, m = 1.00545148831. 
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To be redone 

Numerical Integration vs. Weibull Approx.   
Mechanical Device in Standby with a Mechanical Device 
 

Figure 7- 
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Example 7  n Mechanical Devices in Series with 1 on Standby  
This example outlines a procedure for solving the classic problem as outlined here: 
A car has 4 tires with one spare in the trunk. One tire goes flat (fails). The flat is removed and the spare tire is 
installed. The car travels on until another flat occurs. Calculate the probability of the entire event. 
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Derivation of a Mechanical Device in Standby with a Mechanical Device 
 
Given a simple system of two normally distributed devices with parameters u1, s1, k1, and u2, s2, k2, with one 
device in standby of the other, then the system probability failure distribution is normal with u, s, and k, such that 
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Derivation of the Weibull Method of Approximating an Electrical Standby Electrical 
This discussion describes the mathematical details of how the parameters of the Weibull Method were derived. It is 
quite lengthy and can be skipped over without loss of any information pertaining to its applications.  

The approximation equation 
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−= , can be constructed to intersect the Standby Pf Curve at 
three predetermined points. The three points of intersection are designed to occur at t1, t2, and t3. This approach 
involves the solution of three simultaneous equations with three unknowns. 
  
Given an electrical device in operation with failure rate λ, with another electrical device powered off on standby 
with failure rate β, calculate the probability of a system failure. 
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Derivation of the Weibull Method of Approximating a Lognormal Failure Distribution 
This discussion describes the mathematical details of how the parameters of the Weibull Method for the Lognormal 
Failure Distribution were derived. Recall that the Lognormal Distribution is a Normal Distribution of ln(t) as 
opposed to t.  Therefore substitute ln(t) for t in the Weibull F(t) equation and get  
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Derivation of the Polynomial Method of Approximating a Normal Failure Distribution 
 
Given a Normal Failure Distribution with mean u and sigma s, then the Pf  can be very closely approximated by 

[ ]
logged, previously (units) hours  hl  d,  hl)c(thl)b(thl)a(t  P(t)  wheree 1 F(t)  P 23 abs(P(t))P(t)

2
1

f =++++++=−==
−

 

 

a = − 0.40861530764759/s3 

b = 0.122584592294277 u/s3 − 0.305630571871765/s2 

c = − 0.122584592294277 u2/s3 + 0.61126114374353 u/s2 − 0.782437098467209/s 
d = 0.0408615307647492 u3/s3 − 0.30560571871749 u2/s2 + 0.782437098467209 u/s − 0.693147180559944 

 
 
(1) 

  
Coefficients a, b, c, and d were derived as follows: 
Assume Pf = 1−e P(t) where P(t) is a polynomial ⇒ Ps = e P(t) ⇒ P(t) = ln(Ps). Four points on the t axis are 
strategically chosen such that  t1 = u − 11s/4,  t2 = u − 7s/4,  t3 = u,  and  t4 = u + 7s/4. This yields four simultaneous 
equations P(t1) = ln(Ps1),  P(t2) = ln(Ps2),  P(t3) = ln(Ps3),  P(t4) = ln(Ps4) where Psi  = probability of success measured 
at ti. Note that Psi are constant for any u and s. In fact Ps1 = 0.997020236402405, Ps2 = 0.959940843131253, 
Ps3 = 0.5, and Ps4 = 0.0400591568687467 extracted from a Normal Cumulative Distribution Table. Therefore 
 
P(t1) = ln(0.997020236402405) = −0.00298421193199815  
P(t2) = ln(0.959940843131253) = −0.0408836181572305 
P(t3) = ln(0.5) = −0.693147180559945   
P(t4) = ln(0.0400591568687467) = −3.21739799567722 
 
The strategy is to “curve fit” the four points (ti , ln(Psi)) with a polynomial curve of order three. The coefficients a, b, 
c, and d, of the polynomial P(t) = at3 + bt2 + ct + d can be derived using a curve fitting software program. For 
example if u = 100 and s = 20, the result will be  
P(t) =  05788480.68596536 93552962t 0.03953730 0973998t0.00076823  76913456t0.00000510 23 +−+−
However, the software program will not derive a, b, c, and d in algebraic form as shown above. Every time u or s is 
changed, the program would have to be rerun to determine the new P(t). The derivation of the coefficients in 
algebraic form can be accomplished utilizing the method for solving a set of simultaneous equations using 
determinants. 
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The graph below compares a polynomial fit labeled “Y1 =1-e^P(t)” with a numeric integration of a Cumulative 
Normal Distribution Curve with u = 100 and s = 20. Note the perfect fit for t > 42 along with the complete miss of the 
mark for t < 42. The fix is rather simple. Define the P(t) equal to zero whenever it is positive i.e. define  

 

Y1 = Pf =   
 
Polynomial Curve Fit vs. Numeric Integration 
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Numerical Analysis  a Normal Failure Distribution (CDF) 
 
Given a Normal Failure Distribution with mean u and sigma s, then the Pf  can be very closely approximated by 
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Define F(t) =1 for t > u + 6s and F(t) = 0 for t < u − 6s  
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