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Combinatorial vs. Non-Combinatorial 
Recall from Basic Probability the definition of an “r-combination”. Given n objects, an r-combination is any 
selection of r out of n objects without regard to sequence or order of arrangement. The total number of r-
combinations selected from n objects is notated as nCr.  

Example 1 (Combinatorial Problem)  
Given 3 objects A, B, and C. How many ways can 2 objects be selected from this set of 3.  There are 3 ways: AB, 
AC, and BC. Note that there is no regard to ordering because the act selecting A then B is considered the same as 
selecting B then A. The number of ways of selecting 2 out of 3 objects is notated as 3C2 = 3.  

Example 2 (Combinatorial Problem)  
A system is made up of three black boxes A, B, and C. All three boxes are powered up at the same time. System 
failure is defined to be the state of which any one box is failed. How many ways can the system maintain operation?  
There is 1 way this system can operate i.e. 1 = 3C1 accounting for A, B, and C all operating.  
 
Example 3 (Combinatorial Problem)  
A system is made up of three black boxes A, B, and C. All three boxes are powered up at the same time. System 
failure is defined to be the state of which any two or more boxes have failed. a. How many ways can the system 
maintain operation?  
There are 4 ways this system can operate. They are 1 = 3C3 accounting for A, B, and C operating, and 3 = 3C2 
accounting for A and B, A and C, or B and C operating.   
b. How many ways can the system fail?  
There are 4 ways this system can fail. They are 3 = 3C1 accounting for A and B, A and C, or B and C failing, and 1 
= 3C0 accounting for A, B, and C failing.  
 
Example 4 (A non-combinatorial Problem) 
A system is made up of two black boxes A and B that are powered up at the same time. System failure is defined to 
be the state of which both boxes are failed and A fails before B. Note: B failing before A is not considered as a 
system failure. How many ways can A fail before B?  
There are only two ways both boxes can fail, A before B, or B before A. Therefore the answer to the above is one of 
the two ways. 
Note: Example 3 is a permutation problem as opposed to a combination problem. The important thing to keep in 
mind is that this problem involves a specified sequence, and therefore classified as non-combinatorial.  
 
Example 5 (Non-combinatorial Problem) 
A system is made up of two black boxes A and B. A is powered on, while B is powered off in standby mode. The 
instant A fails, box B is powered on replacing A. System failure is defined to be the state in which both A and B are 
failed. At any given time t, what is the probability that the system will be found operational? 
 
Example 6 (Non-combinatorial Problem) 
A system is made up of two identical resistors in parallel. System failure is defined to be the state in which both 
resistors are failed. The failure rate of both resistors are equal during normal operation. However when one resistor 
fails, the remaining resistor experiences a change in failure rate (increase) due to an increased loading effect. At any 
given time t, what is the probability that the system will be found operational? 
 
Example 7 (Non-combinatorial Problem) 
A system is made up of one black box with a known failure rate. Each time a failure is detected, the black box is 
repaired and put back in operation. The average time to repair is known. At any given time, what is the probability 
that the box will be found in operation? 
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Typical Markov State Diagram 
A Markov diagram is a tool used to document (capture) the qualitative logic of a system’s behavior. The 
following diagram shows a typical Markov State having n input transitions with constant failure rates aj, and m 
output transitions with constant failure rates bk.  
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There are several methods used for quantitative analysis, i.e. calculating Pi, the probability of being in state i. The 
best known method requires solutions to a set of simultaneous differential equations (DEs). The DEs are by-
products of the State Diagram. Once the State Diagram is constructed i.e. once the qualitative analysis is 
performed on the system, the DEs manifest themselves, one for each state. The DE equation (general form) 
associated with each State i is written as follows: 
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  where aj are transitions into State i, and bk are transitions leaving State 
i as shown in the above diagram.. 

 
Example Diagram with Associated DE Equations:  
Two black boxes start operation at the same time. Box A has failure rate a and Box B has failure rate b. 
Successful system operation requires that Box A or Box B or both be functional. Find Pf . 
 Markov State Diagram 
The State Diagram at the right shows a system with 4 
states namely (1), (2), (3), and (4). Let P1 denote the 
probability of the system being in State 1, i.e. the “Full 
Up” state (no failures). Let P2 denote the probability of 
the system being in State 2 etc. The arrowed lines 
represent transitions from one state to another. The a 
and b of this example represent transition rates i.e. the 
rate of which one state is transitioning to another. Then 
according to the above “general” DE equation: 

   

(1)

(2)

(3)

(4)

a

b

b

a

Full Up
System Fail

(Box A and B Failed)

A Failed

B Failed

   aP3 bP2  dP4/dt        aP3, bP1  dP3/dt       bP2, aP1  dP2/dt        b)P1,(a   dP1/dt  +=−=−=+−=  
Note:  States may not have any input transitions or output transitions as shown by States (1) and (4) above.  
 
Another quantitative analysis method, known as the State Sequence Method, allows the analyst more insight into 
the logic flow and mathematics of the problem. The following examples utilize the DE Method to illustrate how 
state equations are derived, and employ the State Sequence Method to give the reader more insight into how  
solutions are derived (shows the Markov process flow).   
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2 Components in Series (Combinatorial): 
Two black boxes start operation at the same time. Box A has failure rate a and Box B has failure rate b. Successful 
system operation requires that both Box A and Box B be functional. Find Pf  =  Probability of System Failure. 
Note: Full Up State = all devices operating, (n) = State Number, P(n) = Pn = Probability of being in State (n) 
           Markov Model        FTA Approach  
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Markov Method of Solution using Simultaneous Differential Equations and Laplace Transforms 
Assumes P(1) = P1 = 1 and P(2) = P2 = 0 when t = 0.   

 tb)a( e 1    P2     P1 1    P2

  tb)a( e  P1    b)a1/(s   L(P1)    1  L(P1) b)a(s

  L(P1) b)(a     P1(0)  L(P1) s    b)P1)(a  L(    L(dP1/dt)     b)P1(a   dP1/dt  
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State Sequence Method State Sequence Diagram 
When solving state probability problems using simultaneous DE 
methods, the logic flow of the original problem easily gets lost due to 
the seemingly unrelated efforts required to calculate a set of DE 
solutions. The State Sequence method used for solving Markov 
problems illustrates the solution process clearly, and allows the 
analyst more insight into the problem’s nature. In addition this 
method offers some easy to construct computer algorithms that can 
be used to generate solutions. 
Refer to the State Sequence Diagram to the right. Let a = failure rate 
of A, and b = failure rate of B. Therefore Ra = e−aΔt and Rb = e−bΔt = 
Reliability of A and B for one fixed time interval Δt ⇒ 
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RaRb)  )(12Rb2RaRaRb(1  P(F3)

RaRb)  RaRb)(1(1    RaRb)  (1RaRbRaRb)  (11  P(F2)
RaRb  1  P(F1)

+−−=−−−=
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No Fails

t = 0

1

1

RaRb

RaRb

RaRb

1 - RaRb

1 - RaRb

1 - RaRb

tΔ

t t Δ=

t2 t Δ=

t3 t Δ=
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1. The above methods assume constant failure rate devices i.e. devices that exhibit a constant probability of  
    success (or failure) in a fixed time interval Δt. 
2. P(Fn) = Sum of all  transition linked Paths connecting N0 to Fn.  Path = Product of all linked transitions. 
3. The Sequence Method can end at **, and the expression 1−RanRbn used for computer quantitative calculation. 
    However, the problem was continued to illustrate how probability equations can be derived using this method.  
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2 Components in Parallel  (Combinatorial): 
Two black boxes start operation at the same time. Box A has failure rate a and Box B has failure rate b. Successful 
system operation requires that Box A or Box B or both be functional. Find Pf . 
 
                            Markov Model        FTA Approach 
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Markov Method of Solution using Laplace Transforms 
From the Markov Diagram above, the 4 differential equations are easily read as follows: 
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2 Components in Parallel State Sequence Diagram 

N0

A1

RaRb
(1-Ra)Rb

A Failed                         B Failed                A&B Failed
t = 0
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Derivation of the “A failed State” Equation  (2 in Parallel) 
Recall Ra = e−aΔt and Rb = e−bΔt = Reliability of A and B for one fixed time interval Δt  
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Derivation of the “B failed State” Equation  (2 in Parallel) 
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Derivation of the “A and B failed State” Equation (2 in Parallel) 
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Derivation of the “No fail State” Equation (2 in Parallel) 
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Preliminary details for the State Sequence Method for solving Non-Combinatorial problems 
 

1.  1  x e    0  x limit =−⎯⎯ →⎯
2.   Recall a commonly known rule that is utilized quite often: 

 x (1)  x x e1    0     x

 1  )         ! 4/3  x  ! 3/2   x  ! 2/  x (1  0   xand   )         ! 4/3  x  ! 3/2   x  ! 2/  x (1  x   xe  1     

         ! 4/4  x  ! 3/3   x  ! 2/2  x   x    xe  1             ! 4/4  x  ! 3/3   x  ! 2/2  x   x    1    xe     

Proof     
  xx e1    0      x

limit

limit

limit

==−−⎯⎯ →⎯

⇒=−−+−⎯⎯ →⎯−−+−=−−

⇒+−+−=−−⇒−+−+−=−

=−−⎯⎯ →⎯

LL

LL

 
     In other words, when x is very small, the term 1−e−x can be replaced by x (or visa versa). 
 
3.  Δt → 0  ⇒  aΔt and bΔt  → 0 since a and b are constants ⇒ as Δt → 0, 1−e−aΔt → aΔt and 1−e−bΔt → bΔt. 
 

4.   b)a(e    1   be ae    0 b a, limit +−=−−+−⎯⎯ →⎯
     Proof 

     ⇒+−+−=−−⇒−+−+−=−          ! 4/4a    ! 3/3a     ! 2/2a    a     ae  1             ! 4/4a    ! 3/3a     ! 2/2a    a     1    ae LL

     ⇒+−+−=−−⇒−+−+−=−          ! 4/4b    ! 3/3b     ! 2/2b    b     be  1             ! 4/4b    ! 3/3b     ! 2/2b    b     1    be LL

           
4!

4b4a 
3!

3b3a     
2!

2b2a    b)(a     1   1be ae   (1) L
+

+
+

−
+

++−=−−+−  

            
4!

4b)(a 
3!

3b)(a     
2!

2b)(a    b)(a     1   b)a(e ⇒
+

+
+

−
+

++−=+− L  

           
3!

3b2ab3b2a33a     
2!

2bab22a    b)(a     1   b)a(e   (2) L+
+++

−
++

++−=+−  

Now as a → 0 and b → 0 powers and products of a and b become insignificant compared to (a+b) and can be 
treated as zeroes ⇒ (1) ≈ (2) 
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Component with Repair (Non-Combinatorial): 
A black box has failure rate a and an average repair rate b. Immediately upon detection of a failure, the box goes 
into a repair process and put back online. Calculate the probabilities of States (1) and (2). 
Note: Full Up State = device operating, (n) = State Number, P(n) = Pn = Probability of being in State (n) 
           Markov Model        FTA Approach  
                                                                                     

                        
FU Fail

a

b

(1) (2)

 
    

                   

   
   tb)a(e

ba
a 

ba
a   P(2)     tb)a(e

ba
a 

ba
b   P(1) +−

+
−

+
=+−

+
+

+
=

 

  

  
Markov Method of Solution using Simultaneous Differential Equations and Laplace Transforms 
Assumes P(1) = P1 = 1 and P(2) = P2 = 0 when t = 0. 
 

⇒++−+++−=⇒+++++=+++=
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b)L(P1)/(s a   b/]1a)L(P1)[(s  b)L(P1)/(s a   L(P2) and  L(P2)   b/]1a)L(P1)[(s   

bL(P2)L(P1) a    0  L(P2) s    bP2)aP1 L(    L(dP2/dt)     bP2aP1  dP2/dt  
bL(P2)L(P1) a     1  L(P1) s    bP2)aP1  L(    L(dP1/dt)     bP2aP1   dP1/dt  
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+

+
+
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+
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⎠
⎞
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Component with Repair State Sequence Diagram 
 
Refer to the State Sequence Diagram below. Let a = failure rate of  the device, and b = repair rate. Let Ra = e−aΔt 
and Rb = e−bΔt . Then Ra = Reliability of A, and 1−Rb = probability of a repair for one fixed time interval Δt. 
 

                                                        

N0

N1 F1

F2N2

Rb

F3N3

Ra

FnNn

1 - Ra

A Failed

A Operating

t = 0

Rb

Rb

Ra

Ra

Ra

1 - Ra

1 - Ra

1 - Ra

tΔ

t t Δ=

t2 t Δ=

t3 t Δ=

tn t Δ=

1 - Rb

1 - Rb

1 - Rb
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Component with Repair State Sequence Method 

 
For the sake of simplifying notation, let Ni = Prob(Ni) = Probability of being in State Ni, and similarly 
let Fi = Prob(Fi) = Probability of being in State Fi. 
 
Referring to the 1 Component with Repair State Sequence Diagram: 
N1 = Ra  
N2 = Ra⋅N1 + (1−Rb)F1 = Ra⋅N1 + (1−Rb)(1−N1)  
N3 = Ra⋅N2 + (1−Rb)(1−N2)  

M                
Nn = Ra⋅Nn−1 + (1−Rb)(1−N n−1) ⇒ 
Nn = (Ra + Rb−1)Nn−1 + (1−Rb) 
Let  k = Ra + Rb−1 and  m = 1−Rb  ⇒  Nn = k⋅Nn−1 + m  ⇒ 
N2 = k ⋅ N1 + m  =  k ⋅ Ra + m 
N3 = k2Ra + km + m =  k2Ra + m(k + 1) 
N4 = k3Ra + k2m + km + m = k3Ra + m(k2 + k + 1) 

M                
Nn = kn−1Ra + m(kn−2 + kn−3 + ⋅⋅⋅  + k + 1) ⇒ 

k1
m)k

k1
m   (Ra   

1k
m)k

1k
m   (Ra     )1(k

1k
m  Rak    

1k
1k m  Rak  Nn 1n1n1n1n

1n
1n

−
+

−
−=

−
−

−
+=−

−
+=

−
−

+= −−−−
−

−  

Calculating for m, 1−k, Ra, and kn−1 as Δt → 0 

     0t ast  b    e1    Rb1    m tb →ΔΔ=−=−= Δ−  

     0t ast  b t a    )e(1 )e(1    Rb)(1Ra)(1  k  1 tbta →ΔΔ+Δ=−+−=−+−=− Δ−Δ−  

 0t as  1    e    Ra ta →Δ== Δ−  

     0t as e     e      1e e      1RbRa  k  tb)a(t)bta(tbta ⇒→Δ==−+=−+= Δ+−Δ+Δ−Δ−Δ−  

     0t as e   1nk t)1b)(na( ⇒→Δ=− Δ−+−  

⇒
Δ+Δ

Δ
+

Δ+Δ
Δ

−=
−

+
−

−= Δ−+−−   
tb t a

tbe )
tb t a

tb(1    
k1

m)k
k1

m   (Ra   Nn    t)1b)(na(1nQ  

and  
b  a

be 
b  a

a      
b  a

be 
b  a

b1  Nn  b)ta(t)tb)(na(
+

+
+

=
+

+⎟
⎠
⎞

⎜
⎝
⎛

+
−= +−Δ−Δ+−  

0t as e 
b  a

a 
b  a

a      
b  a

be 
b  a

a1  Nn  1  Fn  b)ta(b)ta( →Δ
+

−
+

=⎟
⎠
⎞

⎜
⎝
⎛

+
+

+
−=−= +−+−  

 
Note: The above method assumed a constant failure rate device i.e. a device that exhibits a constant probability of  
          success (or failure) in a fixed time interval Δt. 
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2 Components Standby Redundant  (Non-combinatorial): 
Box A has failure rate a and Box B has failure rate b. Box A is powered on while Box B remains off. Immediately 
upon detection of Box A failure, Box B is powered on. Calculate the probability that both boxes fail.  
 

Markov Model FTA Approach 
 

No
fails

A
fail

A&B
fail

a b

(1) (2) (3)

 
 
 
 

                              
x      y

1/2

Pf

 

   1  ) tb (e
ba

a  ) ta (e
ba

b = P(3)           

) ta e   tb (e
ba

a   P(2)           

     ta e    P(1)           

+−
−

−−
−

−−−
−

=

−=

 
         

  )e  1 () e (1 1/2  xy 1/2  fP          

     e  1 y        e 1    x           
bt at

bt at

−−

−−

−−==

−=−=

 

 
Markov Method of Solution using DEs and Laplace Transforms 

bte 
ba

a  ate 
ba

b 1     P3     ate 
ba

a  bte 
ba

a ate 1    P2 P1  1    P3

ate 
ba

a  bte 
ba

a    P2      
as
b)a/(a

bs
b)a/(a  b)a)(sa/(s  Fractions Partial From

 b)a)(sa/(s  L(P2)  a)a/(s  b)L(P2)(s   bL(P2)  a)a/(s  sL(P2)
 bL(P2) aL(P1)    sL(P2)  bP2) L(aP1    L(dP2/dt)     bP2 aP1  dP2/dt  

  ta e  P1    a)1/(s   L(P1)    1  L(P1) a)(s

  L(P1) a     P1(0)  L(P1) s    aP1)  L(    L(dP1/dt)     aP1   dP1/dt  

  bP2  dP3/dt        bP2, aP1  dP2/dt       aP1,   dP1/dt  

−
−

−−
−

+=⇒−
−

+−
−

−−−=−−=

−
−

−−
−

=⇒
+
−

−
+
−

=++

⇒++=⇒+=+⇒−+=
⇒−=⇒−=⇒−=

−=⇒+=⇒=+

⇒−=−⇒−=⇒−=
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Standby State Sequence Diagram 

                              

N0

Ra

N1 A1

A2N2 B2

Ra

1 - Ra

1 - Rb
Rb

Ra

A3N3 B3

1 - Rb
Rb

1 - Ra

1 - Ra

Ra

AnNn Bn

1 - Rb
Rb

1 - Ra

1

1

A Failed

B Failed

No Fails

t = 0

tΔ

t t Δ=

t2 t Δ=

t3 t Δ=

tn t Δ=

                                             
Derivation of the Standby “A failed State” Equation  
Recall Ra = e−aΔt and Rb = e−bΔt = Reliability of A and B for one fixed time interval Δt  

   solution. DE  with theagreeswhich 

 )atebte ( 
ba

a    )atebte ( 
tbta

ta    P(An)get   wesmallt very  Choosing

)atebt(e
)tbe1()tae(1

tae1  )atebt(e
Rb)1(Ra)(1

tae1    )tanetbn(e
1RaRb1

tae1

  )Ra(Rb
RaRb

Ra1     )Rb(Ra
RbRa

Ra1      z
RbRa

nRbnRa      z1nRa  )1RbP(An  P(An)

                                                   

z
RbRa

4Rb4Ra    z)3Rb2RaRbRb2Ra3(Ra z3Ra  RbP(A3)  P(A4)

z
RbRa

3Rb3Ra    z)2RbRaRb2(Ra z2Ra  RbP(A2)  P(A3)

Rb)z(Ra  RazRbP(A1)  P(A2)
z  P(A1)

Ra)  (1  zLet 

nnnn

−−−
−

=−−−
Δ−Δ

Δ
=Δ

−−−
Δ−−−Δ−−

Δ−−
=−−−

−−−

Δ−−
=Δ−−Δ−

−−+

Δ−−

=−
−
−

=−
−
−

=⋅
−
−

=−+−=

⋅
−
−

=+++=+=

⋅
−
−

=++=+=

+=+=
=
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Derivation of the Standby “No fail State” Equation  
N1 = Ra 
N2 = Ra2

      M  
Nn = Ran = (e−aΔt)n  = e−anΔt = e−at

 
Derivation of the Standby “A and B failed State” Equation  
We can easily solve for P3 using the fact that P3 = 1−P1−P2. 

bte 
ba

a    ate 
ba

b    1     P3     )ate  bte (
ba

a     ate     1    P3 −
−

−−
−

+=⇒−−−
−

−−−=  

 
However, to futher illustrate the State Sequence Method: 
 

   solution. DE  with theagrees  which bte 
ab

a    ate 
ab

b    1     P(Bn)
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 1)bt aeat bea (b     
ab

 1)bt aet)ab((a)at betab (b
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 1)bt et)b((1 a)at et)a((1 b  
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 1)bt et b(e a)at et a(e b

  
tatb

 1)bt et b(et a)at et a(et b   P(Bn)
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)t ae  (1)t be(1

 1)t bnet b)(et ae  1()t anet a)(et be  (1   P(Bn)

   
RbRa

 1)nRbRa)(Rb  1()nRaRb)(Ra  (1      
RbRa

Rb)  Ra)(1  (1
 

Rb1

nRbRb
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RbRa
z )1nRb     2Rb  Rb(1nRa     2Ra  Ra z  

RbRa

1nRb1nRa )1P(Bn  P(Bn)

                                                   

z 
RbRa

3Rb3Ra
RbRa

2Rb2Ra
RbRa
RbRa    z)2RbRaRb2(Ra  P(B3)  (B4)

z
RbRa
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RbRa   Rb)z(RaP(B2)  P(B3)
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Rb)  Ra)(1  (1  zLet 

−
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⋅⎥⎦
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Required Order Factor (ROF) (Non-Combinatorial): 
Two black boxes start operation at the same time. Box A has failure rate a and Box B has failure rate b. Successful 
system operation requires that Box A or Box B or both be functional. What is the probability that both Boxes A and 
B fail, and that A fails before B. Also find the probability that both Boxes fail and that B fails before A.     
 
                            Markov Model        FTA Approach 

FU

A
fail

B
fail

A,B
fail

a

b

b

a

(1)

(2)

(3)

(4)

B,A
fail

(5)

 
x      y

1/2

Pf

 

 tae  tb)(a e
ba

a
ba

b  = P(5)

 tbe  tb)(a e
ba

b
ba

a  = P(4)

  tb)a(e   ta e  = P(3)

        tb)a(e   tb e   P(2)

              tb)a(e    P(1)

−−+−
+

+
+

−−+−
+

+
+

+−−−

+−−−=

+−=

 

         
  )e  1 () e (1 1/2  xy 1/2  fP          

     e  1 y        e 1    x           
bt at

bt at

−−

−−

−−==

−=−=

          

 
Markov Method of Solution using Laplace Transforms 
From the Markov Diagram above, the 5 differential equations are easily read as follows: 

 tae  tb)(a e
ba

a
ba

b  = P(5)b)aa)(sab/s(s  L(P5)

b)aa)(sab/(s  aL(P3)  sL(P5)    L(aP3)   L(dP5/dt)     aP3  dP5/dt 

 tbe  tb)(a e
ba

b
ba

a  = P(4)b)ab)(sab/s(s  L(P4)

b)ab)(sab/(s  bL(P2)  sL(P4)    L(bP2)   L(dP4/dt)     bP2  dP4/dt 
  tb)a( e  ta e  P3  b)aa)(sb/(s  L(P3)     aP3 bP1  dP3/dt  

 tb)a( e  tb e  P2  b)ab)(sa/(s  L(P2)     bP2 aP1  dP2/dt  

  tb)a( e  P1      b)P1(a   dP1/dt  

  
  aP3  dP5/dt       bP2,  dP4/dt       aP3, bP1  dP3/dt       bP2, aP1  dP2/dt      b)P1,(a   dP1/dt  

−−+−
+

+
+

⇒+++=

⇒+++==⇒=⇒=

−−+−
+

+
+

⇒+++=
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ROF State Sequence Diagram (Version 1) 

 
 

BA2

BA3

BAn

1

1

N0

A1

RaRb
(1-Ra)Rb

A Failed                        B Failed                   AB Failed              BA Failed
t = 0

B1N1

A2

RaRb
(1-Ra)Rb

B2 AB2N2

A3

RaRb
(1-Ra)Rb

B3 AB3N3

An

RaRb
(1-Ra)Rb

Bn ABnNn

Ra(1-R b)

Ra(1-R b)

(1-R b)

Ra(1-R b)

1

1

R a

R a

R a

Rb

Rb

Rb

No Fails

(1-Ra)

(1-Ra)

(1-Ra)
(1-R b)

(1-R b)

Ra(1-R b)

tΔ

t t Δ=

t2 t Δ=

t3 t Δ=

tn t Δ=
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ROF (Constant Failure Rate Version 1) 
t-bt-a e  Rb ,e  Ra ΔΔ == ,  N1 = N0RaRb,  N2 = N0Ra2Rb2,  Nn = N0RanRbn  

 
A1= N0 (1-Ra)Rb 
A2= A1Rb + N1 (1-Ra)Rb = N0 (1-Ra)Rb2 + N1 (1-Ra)Rb 
A2 = (N0Rb + N1)(1-Ra)Rb = (N0Rb + N0RaRb)(1-Ra)Rb = N0Rb2(1 + Ra)(1-Ra)  
A3 =  A2 Rb + N2(1-Ra)Rb =  N0Rb3(1 + Ra)(1-Ra) + N0Ra2Rb3(1-Ra) 
A3 = N0Rb3(1- Ra)[ 1+ Ra + Ra2] = N0Rb3(1- Ra3) 
 
A4 =  A3 Rb + N3(1-Ra)Rb      
A4 = N0Rb4(1- Ra)[ 1+ Ra + Ra2] + N0Ra3Rb4(1-Ra) 
A4 = N0Rb4(1- Ra)[ 1+ Ra + Ra2 + Ra3] = N0Rb4(1- Ra4) 
     ... 
An = N0Rbn (1 - Ran) 
 
AB2 = A1(1-Rb) = N0 (1-Ra)(1-Rb)Rb                            
 
AB3 = AB2 + A2(1-Rb)  
AB3 = N0Rb(1-Ra)(1-Rb) + N0Rb2(1- Ra2) (1-Rb) 
AB3 = N0Rb(1-Ra)(1-Rb)[1 + Rb(1+ Ra)] = N0Rb(1-Rb)[ (1-Ra) + Rb(1- Ra2)] 
 
AB4 = AB3 + A3(1-Rb)  
AB4 = N0Rb(1-Rb)[ (1-Ra) + Rb(1- Ra2)] + N0Rb3(1- Ra3) (1-Rb) 
AB4 = N0Rb(1-Rb)[ (1-Ra) + Rb(1- Ra2) + Rb2(1- Ra3)] 
 
AB5 = AB4 + A4(1-Rb)  
AB5 = N0Rb(1-Rb)[ (1-Ra) + Rb(1- Ra2) + Rb2(1- Ra3)] + N0Rb4(1- Ra4)(1-Rb) 
AB5 = N0Rb(1-Rb)[ (1-Ra) + Rb(1- Ra2) + Rb2(1- Ra3) + Rb3(1- Ra4)] 
     ...   => 

∑∑
=

ΔΔΔΔ

=

=−−=−−=
1-n

1i

tai-t1)-b(i-tb-tb-
0

1-n

1i

i1-i
0n )e1(e)e1(eN  )Ra1(RbRb)1(RbNAB > 

∑∑
=

ΔΔ

=

ΔΔ Δ−=−Δ≈
1-n

1i

tai-t1)-b(i-
0

1-n

1i

tai-t1)-b(i-
0n t)e1(ebN  )e1(etbNAB  

 then x,idx  t ilet  and t, dx let  0, t let  contiuous, toAB discreteconvert  To n ==ΔΔ=→Δ  

⇒−=Δ−≈ ∫∑
=

ΔΔ dx  )e1(e bNt)e1(ebNAB ax-
t

0

bx-
0

1-n

1i

tai-t1)-b(i-
0n  

]ee
ba

b
ba

a[N  AB bt-b)t(a-
0n −

+
+

+
≈ +  

In terms of pdfs: 

⇒=−=−≈ ∫∫∫∫ dx  pdfa(z)dzpdfb(x) N dx)e1(be N dx  )e1(e bNAB
x

0

t

0
0

ax-
t

0

bx-
0

ax-
t

0

bx-
0n  

∫=
x

0
0n  pdfa(z)dzpdfb(x) N )pdf(AB  
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ROF State Sequence Diagram Version 2 

 
  
  
  
  

BA1

BA2

BA3

BAn

1

1

1

N0

A1

RaRb
(1-Ra)Rb

A Failed                        B Failed                   AB Failed              BA Failed
t = 0

B1 AB1N1

A2

RaRb
(1-Ra)Rb

B2 AB2N2

A3

RaRb
(1-Ra)Rb

B3 AB3N3

An

RaRb
(1-Ra)Rb

Bn ABnNn

(1-Ra)(1-Rb)/2

Ra(1-Rb)

Ra(1-Rb)

(1-Rb)

Ra(1-Rb)

1

1

1
Ra

Ra

Ra
Rb

Rb

Rb

No Fails

(1-Ra)

(1-Ra)

(1-Ra)
(1-Rb)

(1-Rb)

Ra(1-Rb)

tΔ
(1-Ra)(1-Rb)/2

(1-Ra)(1-Rb)/2

(1-Ra)(1-Rb)/2

(1-Ra)(1-Rb)/2

(1-Ra)(1-Rb)/2

(1-Ra)(1-Rb)/2

(1-Ra)(1-Rb)/2

t t Δ=

t2 t Δ=

t3 t Δ=

tn t Δ=
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ROF State Sequence Equations Version 2 (A fails before B state) 

  z
Ra1

1nRa11-nRb2/1nRb1nRa  )1P(ABn  P(ABn)

  z1)  Ra     3-nRa2-n(Ra1-nRb2/1nRb1nRa  )1P(ABn  P(ABn)

                                                   
)z3Rb3RaRb3Rb2Ra2/3Rb3(Ra  P(AB3)  P(AB4)

)z2Rb2RaRb2/2Rb2(Ra  P(AB2)  P(AB3)

 Rb)z(RaRb/2P(AB1)  P(AB2)
z/2  P(AB1)

Rb)  Ra)(1  (1  zLet 

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
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⇒⎥⎦
⎤

⎢⎣
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−−=

L

M
 

Expanding each of the above equations yields: 

 
Note that by symmetry, P(BAn) is obtained simply by substituting a for b and b for a to get 

atb)ta( ee
ba

a
ba

b     P(BAn) −+− −
+

+
+

=  
 

btb)ta(bt
b)ta(

tbn
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n
nn
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nn
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ba

b
ba
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ba
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e1tb
2
2    P(ABn)
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RaRb)(1
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ROF State Sequence Equations Version 2a (A fails before B state) 

( )

d.disregarde becan BA  N and ABN from  ons  transiti theall
 small, very ist  when s,other wordIn  0.   tkab t b t a k   0t   as  Fail)Both P(N oflimit   theNow

  .kconstant  somefor  )e(1)ek(1  Rb)Ra)(1k(1    Fail)Both P(N

 is State) fail(both  StateBA or  ABan   toState) fail (No State Nan  fromn  transitioa ofy probabilit The :Note

e  e
ba

b  
ba

a   dx   e1 eb   ABn    Limit 

dx   
1n

1i

axe1 bxeb   dx    
1n

1i

axe1 bxeb     t  
2

nab  ABn   Limit 

dx   
1n

1i

axe1bxe b     tab 
tb)(a
tb)n(a  

2
1  ABn   Limit 

idx  then t i let x  and 0approach dx  t Let 

   
1n

1i

taie1tbie )e(1     )e)(1e(1 
e1
e1 

2
1 ABn   

  
1n

1i

iRa1 iRbRb)(1     Rb)Ra)(1(1 
RaRb1

RbRa1 
2
1 ABn    

  iRb 
1n

1i

iRa1 Rb)(1      z/2 
RaRb1

RbRa1     iRb 
1n

1i Ra1

iRa1 z      z/2 
RaRb1

RbRa1   ABn    

                                                   
  ]z3)Rb2Ra  Ra  (1  2Ra)Rb  (1    [Rb    )z/23Rb3Ra   2Rb2Ra   RaRb (1 AB4

  z3)Rb2Ra  Ra  (1  Ra)z  (12Rb    Rbz    )z/23Rb3Ra   2Rb2Ra   RaRb (1 AB4

  z/23Rb3Ra  Rb)(13)Rb2Ra  Ra  Ra)(1(1  Ra)z  (12Rb   Rbz    )z/22Rb2Ra   RaRb (1 AB4

  N3z/2   Rb)A3(1  AB3   AB4
  ]z2Ra)Rb(1   [Rb    )z/22Rb2Ra   RaRb (1    z2Ra)Rb(1   Rbz    )z/22Rb2Ra   RaRb (1    AB3

  z/22Rb2Ra  Rb)(12Ra)Rb  Ra)(1(1   Rbz    RaRb)z/2 (1    N2z/2   Rb)A2(1  AB2   AB3

  Rbz    RaRb)z/2 (1  RaRbz/2   Rb)RbRa)(1(1    z/2    N1z/2   Rb)A1(1  AB1   AB2
z/2 AB1

  Rb)  Ra)(1  (1  zLet  

n)RbnRa(1    nA

  ......

3)Rb3Ra(1   3Ra)Rb)(12Ra  Ra(1  3Ra)Rb(12Ra 3Ra)RbRa)(1(1     Ra)RbN2(1  A2Rb  A3
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ROF State Sequence Diagram Version 3 

 
 

BA1

BA2

BA3

BAn

1

1

1

N0

A1

RaRb
(1-Ra)Rb

A Failed                        B Failed                   AB Failed              BA Failed
t = 0

B1 AB1N1

A2

RaRb
(1-Ra)Rb

B2 AB2N2

A3

RaRb
(1-Ra)Rb

B3 AB3N3

An

RaRb
(1-Ra)Rb

Bn ABnNn

a(1-Ra)(1-Rb)/(a+b)

Ra(1-Rb)

Ra(1-Rb)

(1-Rb)

Ra(1-Rb)

1

1

1
Ra

Ra

Ra
Rb

Rb

Rb

No Fails

(1-Ra)

(1-Ra)

(1-Ra)
(1-Rb)

(1-Rb)

Ra(1-Rb)

tΔ
b(1-Ra)(1-Rb)/(a+b)

t t Δ=

t2 t Δ=

t3 t Δ=

tn t Δ=

b(1-Ra)(1-Rb)/(a+b)

b(1-Ra)(1-Rb)/(a+b)

b(1-Ra)(1-Rb)/(a+b)

a(1-Ra)(1-Rb)/(a+b)

a(1-Ra)(1-Rb)/(a+b)

a(1-Ra)(1-Rb)/(a+b)
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ROF State Sequence Equations Version 3 (A fails before B state) 
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Note that by symmetry, P(BAn) is obtained simply by substituting a for b and b for a to get 
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DE / State Sequence Equation Comparisons    (Constant Failure Rate type Problems) 
Example State Probability Equations Computer Expression (Algorithm) 
Series   
No Fail  tb)a( e  +−    nRbnRa  
Fail    tb)a(e  1 +−−   nRbnRa1−  
Parallel   
No Fail P1 =   tb)(a e +− P(Nn) =    nRbnRa
A Fail P2 =   tb)a(e   tb e +−−− P(An) =    nRbnRa nRb −

B Fail P3 =   tb)a(e   ta e +−−− P(Bn) =     nRbnRa nRa −

A&B 
Fail 

P4 =  ) tbe  )(1 ta e (1 −−−− P(ABn) =     )nRb  )(1nRa  (1 −−

Repair   
No Fail  tb)a(e

ba
a 

ba
b   P(1) +−

+
+

+
=  P(Nn) = (Ra + Rb−1)P(Nn−1)+ (1−Rb) 

A Fail  tb)a(e
ba

a 
ba

a   P(2) +−
+

−
+

=  P(An) = Rb − (Ra + Rb−1)P(Nn−1)  

Standby   
No Fail P1 =   ta e− nRa   P(Nn)=  
A Fail 

) ta e   tb (e
ba

a   P2 −−−
−

=  Ra)(11nRa  )1nP(ARb  P(An) −−+−⋅=  

A&B 
Fail 1  ) tb (e

ba
a  ) ta (e

ba
b  P3 +−

−
−−

−
=
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⎛
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ROF   
No Fail P1 =   tb)(a e +− P(Nn) =    nRbnRa
A Fail P2 =   tb)a(e   tb e +−−− P(An) =    nRbnRa nRb −

B Fail P3 =   tb)a(e   ta e +−−− P(Bn) =     nRbnRa nRa −

AB Fail btb)ta( ee
ba

b
ba

a  P4 −+− −
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⎥
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⎠
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⎛
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⎥
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⎠
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⎜
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⎛
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                                                           Rb)  Ra)(1  (1  z and ,e  Rb ,e  Ra where tbta −−=== Δ−Δ−  
Note that with respect to the combinatorial type problems, the equations and associated computer expressions are 
quickly interchangeable. Note also that this is not the case with the non-combinatorial types. 
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Visual Basic Code  (Constant Failure Rates) 
Standby 
Public Sub StateSeq() 
'Standby State Sequence Model    F(2,i) = P(2, idt)    A2,B2 current values, A1,B1, previous values 
'Code for P(An) = Rb⋅P(An−1)+Ran−1(1−Ra) 
EVALUATE ("dt=1"): A2 = 0: FX(2, 0) = 1 - Exp(A2) 
A1 = A2: A2 = EVALUATE("-0.01*dt"): B2 = EVALUATE("-0.015*dt") 
FX(2, 1) = Exp(B2) * FX(2, 0) + Exp(A1) * (1 - Exp(A2 - A1)) 
dt = 1 
Nextdt: dt = dt + 1: If dt > 120 Then Exit Sub 
EVALUATE ("dt=" & dt): A1 = A2: b1 = B2: A2 = EVALUATE("-0.01*dt"): B2 = EVALUATE("-0.015*dt") 
FX(2, dt) = Exp(-0.015) * FX(2, dt - 1) + Exp(A1) * (1 - Exp(-0.01)) 
GoTo Nextdt 
End Sub 
 
Repair     
Public Sub StateSeq() 
'Repair State Sequence Model, F(2,i) = P(1, idt),  A2,B2 current values, A1,B1, previous values 
'Code for P(Nn) = (Ra + Rb-1)P(Nn-1)+ (1-Rb) 
EVALUATE ("dt=1"): FX(2, 0) = 1 
A1 = A2: b1 = B2: A2 = EVALUATE("exp(-0.01*dt)"): B2 = EVALUATE("exp(-0.015*dt)") 
FX(2, 1) = (A2 + B2 - 1) * FX(2, 0) + 1 - B2 
dt = 1 
Nextdt: dt = dt + 1: If dt > 120 Then Exit Sub 
EVALUATE ("dt=" & dt): A1 = A2: b1 = B2: A2 = EVALUATE("exp(-0.01)"): EVALUATE ("exp(-0.015)") 
FX(2, dt) = (A2 + B2 - 1) * FX(2, dt - 1) + 1 - B2 
GoTo Nextdt 
End Sub 
 
ROF 
Public Sub StateSeq() 
'ROF State Sequence Model, F(2,i) = P(4, idt),  A2,B2 current values, A1,B1, previous values 
'Code for P(ABn) = P(ABn-1)+{Ran-1Rbn-1/2+ Rbn-1[(1- Ran-1)/( 1-Ra)]}(1-Ra)(1-Rb) 
EVALUATE ("dt=1"): A2 = 0: B2 = 0: FX(2, 0) = 0 
A1 = A2: b1 = B2: A2 = EVALUATE("-0.01*dt"): B2 = EVALUATE("-0.015*dt") 
FX(2, 1) = FX(2, 0) + (Exp(A2) * Exp(B2) / 2 + Exp(B2) * (1 - Exp(A2)) / (1 - Exp(-0.01))) * (1 - Exp(-0.01)) * (1 
- Exp(-0.015)) 
dt = 1 
Nextdt: dt = dt + 1: If dt > 120 Then Exit Sub 
EVALUATE ("dt=" & dt): A1 = A2: b1 = B2: A2 = EVALUATE("-0.01*dt"): B2 = EVALUATE("-0.015*dt") 
FX(2, dt) = FX(2, dt - 1) + (Exp(A2) * Exp(B2) / 2 + Exp(B2) * (1 - Exp(A2)) / (1 - Exp(-0.01))) * (1 - Exp(-0.01)) 
* (1 - Exp(-0.015)) 
GoTo Nextdt 
End Sub 
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Concluding Notes 
1. Although Markov techniques can be utilized for both combinatorial and non-combinatorial type problems, the 

analyst should stick with FTA when dealing with combinatorial types, and Markov when dealing with non-
combinatorial type problems. 

2. Although the qualitative methods shown above can also be used for analysis of non-constant failure rate 
components (mechanical devices), the quantitative methods shown are limited to constant failure rate 
components. 

3. It is suggested that the analyst utilize “Markov” computer programs when performing a quantitative analysis. The 
methods described above can become very exhaustive when the number of states gets large. These methods were 
illustrated simply to have the reader obtain a better understanding and insight into Markov techniques.  

4. Several computer programs are available for solving non-combinatorial problems. Most programs utilize matrix 
algebra techniques, and output numeric values as opposed to equations for probability evaluation of each state. 
Be aware that these programs will have limitations such as number of input states and program execution speed.  
However this limitation keeps getting smaller with each advance in computer technology. 
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